Triết học
Triết Học Thế Thân
Lê Mạnh Thát
02/03/2555 22:53 (GMT+7)
Kích cỡ chữ:  Giảm Tăng

Chúng ta đã thấy rằng đối với Tỳ Bà Sa, bất kỳ nhóm từ biểu thị đúng ngữ pháp nào cũng biểu trưng một vật nào đó, một quan điểm có thể đã bị phê phán và thay thế bằng thuyết mô tả của Thế Thân. Thuyết này chủ trương đối với bất kỳ số hạng đơn không đổi hay danh từ riêng n nào ta luôn luôn có thể thay nó bằng một thuộc từ N; thuộc từ này chỉ đúng đối với vật mà n có liên quan, và trong đó n không xảy ra hoặc không được cần đến. Thí dụ, đối với bất kỳ n nào, ta cũng có (ix)N(x), trong đó ký hiệu (i...) cho thấy bất kỳ biểu thức nào theo sau thuộc dạng N(...) sẽ tạo thành cùng với nó một mô tả có thể hủy. Và vì bất kỳ biểu thức nào có dạng N(x) đều có thể luôn luôn được thay thế, theo các quy tắc được biết, bởi một tác dụng f như f(x) chẳng hạn, thuyết này còn chủ trương đối với bất kỳ số hạng đơn không đổi hoặc danh từ riêng hoặc ngay cả phát biểu nào trong đó chúng xảy ra đều luôn luôn có một tác dụng như f(x).


Như vậy, nếu Tỳ Bà Sa chủ trương chữ ‘sinh’ phải biểu trưng một vật nào đó gọi là ‘sinh’ để có thể chứng minh sự thật của những phát biểu như “anh nên biết sự sinh ra cảm thọ của anh”, thì Thế Thân sẽ đáp rằng không có một vật như vật thể gọi là sinh, cũng không cần thiết hay yêu cầu tạo ra một vật như thế. Vì luôn luôn có một công cụ có thể loại bỏ dễ dàng những từ như sinh và tương tợ, và trong đó không có một số hạng đơn không đổi hay danh từ riêng nào xảy ra. Vì vậy, thay vì nói “bạn nên biết sự sinh ra cảm thọ của bạn”, ta luôn luôn có thể nói “bạn nên biết cái gì đó mà bạn cảm nhận đang được hình thành”, chẳng hạn. Hoặc ta còn có thể nói, “bạn nên biết cái gì đó bạn cảm nhận đang hiện hữu đã không hiện hữu trước đây”, v.v. Trong những phát biểu thay thế này, từ ‘sinh’ còn không được cần đến, huống hồ một vật thể gọi là ‘sinh.’ Vì thế, quan niệm được ưa chuộng nhất của Tỳ Bà Sa và rất nhiều trường phái triết học Ấn độ khác như Mīmamsā cho rằng từ ngữ phải biểu trưng vật thể, hay “từ ngữ phải hiển lộ vật thể” như cách dùng từ hoa mỹ của Abhidharmadīpa, đều bị loại bỏ ngay lập tức. Trong hướng tư tưởng này của Thế Thân, không còn phải lo lắng về sự đe dọa của những thực thể như ‘phi-hữu’ và những gì kèm theo nó. Đây là kết quả chính yếu đầu tiên mà ông đã rút ra từ thuyết mô tả của mình.

Tuy nhiên, đó là một kết quả tiêu cực, mặc dù quan trọng. Nó quan trọng là do sự kiện tất cả các số hạng đơn không đổi hay danh từ riêng đều được giản lược thành một cái khả biến x nào đó cùng với các thuộc từ riêng của chúng. Vì điều này, kết quả chính yếu thứ hai có thể được rút ra, một kết quả tích cực khỏi phải nói. Kết quả này nằm ở nhận thức: đối với bất kỳ số hạng hay danh từ riêng nào, để có thể giản lược và thay thế chúng, thì phát biểu luôn luôn chứa đựng thành ngữ “cái gì đó .....” Bây giờ, thành ngữ này có dạng ($x)(...), cho biết có một x như (...). Rõ ràng, với dạng này, ta có thể thay nó, một cách phù hợp với phương pháp của Thế Thân, bằng một biểu thức có dạng - ("x)(...); bởi vì, nói rằng cái gì đó đang được hình thành thì cũng giống như nói không phải mọi cái đang được hình thành. Tính hoán chuyển của hai biểu thức này dẫn Thế Thân đến nhận thức rằng đối với bất kỳ thực thể x nào như thế cũng có bất kỳ một số các đặc tính nào đó, như f,g ..., là đúng đối với nó, và nếu có một đặc tính f như thế là đúng đối với nó, thì cũng có một đặc tính g như thế là đúng đối với nó. Đưa vào ngôn ngữ ký hiệu, ta có:

(1) ("x)[f(x) É g(x)] & ($x)f(x) ® ($x)g(x)

trong đó f(x) và g(x) có thể biểu trưng bất kỳ đặc tính nào của x mà nó thế chỗ. Chẳng hạn, cái gì đó đang được hình thành. Theo quan điểm của Thế Thân, điều này hàm ý cái gì đó có thể sẵn sàng bị hủy. Như vậy, thật quan trọng để nhận ra rằng trong chủ trương của Thế Thân, theo đó “sự sinh của cái gì đó” đồng nhất với “cái gì đó đang được hình thành”, không hề hàm ý bất kỳ loại song quan ngữ nào; trái lại, một kết quả có ý nghĩa quan trọng đã được khám phá. Bởi vì, bằng cách giản lược bất kỳ số hạng đơn không đổi hay danh từ riêng nào thành các thuộc từ phù hợp với chúng, lần đầu tiên trong lịch sử triết học Ấn độ, Thế Thân không những loại bỏ vĩnh viễn sự coi trọng mang tính chất tôn giáo mà các trường phái như Mīmāmsaka mắc phải đối với từ ngữ và các hậu quả xuất phát từ sự coi trọng này[1] như sự giả định về thực tại tính của từ ngữ được tán thành một phần bởi Tỳ Bà Sa hoặc trọn vẹn bởi các bộ phái khác, mà Thế Thân còn nhận ra, qua sự giản lược này, khái niệm lan truyền (vyāpti) và ý nghĩa của nó.

Ngày nay, người ta thường đồng ý một suy luận trong luận lý học Ấn độ có thể được viết dưới dạng:[2]
(2) ("x) [A(h,x) ® A(s,x)]

trong đó A(y,x) chỉ quan hệ lan truyền của số hạng y trong x, h là đặc tính được biết (hetu), và s là đặc tính được chứng minh (sādhya). Tuy nhiên, chỉ có thể viết một dạng như thế nếu quan hệ lan truyền được giả định, như nó đã quá hiển nhiên mà không cần phải chứng minh. Thế nhưng, cho đến thời đại Thế Thân quan hệ đó chưa bao giờ được phát biểu và nghiên cứu công khai, mặc dù công bằng mà nói, cần lưu ý rằng những người đi trước ông chắc chắn đã có thông tin về nó. Thí dụ, Nyāyasūtra đã diễn tả ý tưởng rằng nếu một x nào đó tồn tại thì một y nào đó chắc phải tồn tại.[3] Rõ ràng, tác giả của nó đã có một ý tưởng nào đó về khái niệm lan truyền. Cũng phải nói điều như thế đối với Tỳ Bà Sa. Trong lời bàn của mình về bốn tướng của pháp hữu vi, được dịch ở Chương III của nghiên cứu này, Thế Thân có đề cập đến một định nghĩa của Tỳ Bà Sa mà ông xem là “không phổ biến” (avyāpin).[4] Điều này chỉ rõ ít ra Tỳ Bà Sa hẳn đã biết đến khái niệm lan truyền mặc dù có lẽ không phải theo ý nghĩa chuyên biệt của nó. Và với việc Thế Thân sử dụng từ “avyāpin” ở đây, ta cũng có thể chấm dứt ngay khẳng định sai lầm của một tác giả nào đó: “Nên lưu ý rằng các nhà luận lý học Phật giáo đã không dùng từ vyāpin cho quan niệm này. Thay vì thế họ dùng từ ‘hetusādhyapratibandha’, có nghĩa đen là ‘nối kết hetu và sādhya với nhau.’”[5]

Như vậy, mặc dù ngày nay hầu như tất cả các tác phẩm luận lý của ông đã mất hoặc chỉ còn lại từng phần trong nhiều bản dịch khác nhau, ta vẫn có thể, qua việc khám phá nguyên bản Phạn văn Câu Xá Luận, tin chắc rằng trong phạm vi các tư liệu này cho phép thì Thế Thân đã tìm ra không chỉ quan niệm lan truyền mà còn cả từ ngữ vyāpin, chuyển tải ý nghĩa này. Vậy thì, vấn đề là ông đã tìm ra quan niệm này như thế nào. Điều này tương đối dễ giải quyết, vì trong phạm vi của thuyết mô tả ta có thể mong đợi một kết quả như thế. Ta đã thấy rằng để chống lại giả thuyết của Tỳ Bà Sa về từ ngữ, Thế Thân đã phải phát minh một công cụ luận lý giúp ông loại bỏ mỗi và mọi từ mà Tỳ Bà Sa có thể xem như biểu trưng các vật thể nào đó. Công cụ đó về sau được đồng hóa thành thuyết mô tả tổng quát mà chúng ta đã bàn đến. Nhưng một công cụ như thế chỉ có thể vận hành nếu một thuyết nào đó về tính thay thế được giả định, trong đó cái thay thế được xem như tương đương với cái mà nó có thể thay thế. Kết quả là việc loại bỏ một từ chỉ xảy ra khi tính thay thế có sẵn được giả thiết, tức khi cái thay thế nó được lan truyền bởi nó.

Với một số hạng đơn n không đổi, một thuộc từ N có thể như thế nào đó để cho (ix)N(x) là đúng đối với bất kỳ cái gì mà n cũng đúng [đối với nó], nếu và chỉ nếu N được lan truyền bởi n. Chẳng hạn, từ “sinh” có thể được thay bằng các nhóm từ như “cái gì đó đang hình thành” hay “cái gì đó đang hiện hữu đã không hiện hữu trước đây”, nếu và chỉ nếu tất cả chúng đều tương đương với nhau, có nghĩa là nếu và chỉ nếu các nhóm từ đó được lan truyền bởi từ ‘sinh’ để chúng có thể chuyển tải những gì mà từ ngữ đó chuyển tải. Vì thế tính khả hoán của từ đó phải dự liệu một quan hệ giữa nó và cái thế chỗ nó. Số hạng n phải có một quan hệ R với N của nó để cho (ix)N(x) là một thay thế có giá trị đối với n. Và để (ix)N(x) là một thay thế có giá trị, quan hệ R đó phải là một quan hệ có sẵn, tức là quan hệ cho phép số hạn n lan qua thuộc từ N của nó để cho (ix)N(x) chuyển tải được những gì chính n chuyển tải. Nói cách khác, quan hệ đó phải là một quan hệ lan truyền, được chứng minh rõ ràng trong công thức (1): với bất kỳ thực thể x nào như thế thì bất kỳ một số đặc tính f, g, v.v. nào cũng đúng đối với nó, và nếu có một đặc tính f như thế để cho f(x), thì cũng có một đặc tính g như thế để cho g(x). Như vậy, khái niệm về quan hệ lan truyền đã hàm tàng trong thuyết mô tả của Thế Thân. Thật vậy, một lý thuyết như thế khó có thể được đề ra nếu khái niệm đó không được giả định. Để có giá trị, học thuyết về tính khả hoán phải phụ thuộc vào sự có mặt của khái niệm này.

Nay nếu chúng ta chuyển quan hệ lan truyền đó từ chữ sang câu thì rõ ràng chúng ta sẽ có một quan hệ đồng nhất. Chúng ta đã chỉ ra rằng với bất kỳ biểu thức nào có dạng (ix)N(x), ta luôn luôn có thể thay thế nó, theo các quy tắc được biết, bằng một tác dụng F như F(x). Như vậy, thay vì nói “sinh là cái đang hiện hữu đã không hiện hữu trước đây”, ta luôn luôn có thể nói “sinh chỉ cho cái gì đó đang hiện hữu đã không hiện hữu trước đây”, tức, thay vì:

(3) n = (ix)N(x)

ta có:

(4) ("x) ($y) [f(x):(x = y) ® g(y)]

Nói cách khác, khi ta đồng nhất chữ ‘sinh’ với nhóm từ ‘cái gì đó đang hình thành’ thì tất nhiên câu nói “đây là sự sinh của cái gì đó” nhất thiết phải có nghĩa “cái gì đó đang hình thành” hoặc “đây là cái gì đó đang hình thành.” Quan hệ lan truyền giữa chữ ‘sinh’ và nhóm từ ‘cái gì đó đang hình thành’ cho phép thay chữ trước bằng nhóm từ sau trong bất kỳ văn mạch nào nơi nó được đòi hỏi và khi sự rõ ràng về mặt triết học được cần đến. Tương tợ, quan hệ này phải có mặt trong việc khẳng định rằng “đây là sự sinh của cái gì đó” cũng hàm ý “đây là cái gì đó được hình thành.” Cả hai loại quan hệ này đều được gọi là lan truyền. Thật ra, tính lan truyền thường được hiểu như một tiêu chuẩn để xem xét sự hoàn chỉnh của một định nghĩa và như vậy nó được sử dụng phổ biến. Ta đã thấy Thế Thân sử dụng từ avyāpin, không-phổ-biến, để phê phán định nghĩa của Tỳ Bà Sa. Gangeśa và học phái của ông cũng phát triển một học thuyết phức tạp về định nghĩa, dựa vào việc tìm hiểu những gì mà quan niệm ‘lan truyền’ chứa đựng.[6] Vì thế, ta có thể nói rằng quan hệ lan truyền giữa các từ ngữ rơi vào phạm vi của học thuyết về định nghĩa, nếu ta xem thuyết mô tả trong ý nghĩa giới hạn của nó là tương đương với thuyết định nghĩa trong ý nghĩa phổ quát nhất của nó. Tuy nhiên, quan hệ đó, nếu áp dụng cho các phát biểu, rõ ràng là một quan hệ đồng nhất. Vậy, lan truyền là gì?

Từ vyāpin, lan truyền, được dùng lần đầu tiên theo nghĩa chuyên môn của nó ở trong Vādavidhi, trong đó người chống đối ông dùng nó để đưa ra một chứng cứ sai lầm dựa vào “tính tương tợ của nhận thức.”[7] Cũng chính trong đó, lần đầu tiên Thế Thân định nghĩa lan truyền là gì. Theo ông, “một vật mà nó không thể xuất hiện nếu không có một vật khác thì được cho là được nối kết bất khả phân với vật khác đó, thí dụ như lửa với khói”, và “suy luận là sự tri nhận trực tiếp về vật được nối kết bất khả phân đó bởi người nào đó có ý thức về sự nối kết bất khả phân đó.”[8] Vì thế, lan truyền được định nghĩa qua sự nối kết bất khả phân. Và trong Vādavidhi, sự nối kết này đã được nhìn theo hai cách khác nhau. Thứ nhất, nó được định nghĩa qua sự không-xảy-ra của một vật nếu không có sự xảy ra của một vật khác mà nó được nối kết bất khả phân. Thứ hai, nó được định nghĩa qua sự không-xảy-ra của một đặc tính, tức “một đặc tính mà nó không bao giờ xảy ra trừ khi một đặc tính khác có mặt thì được cho là được nối kết bất khả phân với đặc tính khác đó.”[9]

Hai quan điểm này phản ánh rất rõ nguyên tắc chính của Thế Thân về thuyết mô tả, vốn khẳng định rằng một số hạng đơn không đổi hay một danh từ riêng luôn luôn có thể được thay bằng một thuộc từ thích hợp, và ngược lại. Giả định của chúng ta là khái niệm lan truyền là quan niệm nền tảng của thuyết mô tả. Thế Thân không chỉ phát biểu rằng sự xảy ra của một vật đòi hỏi sự xảy ra của một vật khác để có thể đáp ứng các điều kiện lan truyền mà còn phát biểu rằng điều đó cũng đúng đối với các đặc tính của một vật.

Vượt lên trên thuyết mô tả thì định nghĩa vừa nêu, trước tiên, là một định nghĩa lan truyền khi nó được áp dụng vào suy luận luận lý. Nói rằng Per (A,B), trong đó Per có nghĩa A lan qua (pervading) B, cũng chính là nói rằng:

(5) ("x) (A(x) ® B(x))

Có nghĩa là đối với mỗi thực thể x, nếu được cho A(x) thì ta luôn luôn có thể suy ra B(x). Hoặc, theo thuật ngữ của Thế Thân, nếu được cho h (hetu) ta luôn luôn có thể chứng minh s (sādhya, cái được chứng minh), dĩ nhiên là với giả định Per(h,s). Nay ta đã thấy rằng lan truyền được định nghĩa qua sự nối kết bất khả phân (avinābhāva), nói rằng “một vật mà nó không bao giờ xảy ra trừ khi một vật khác có mặt thì được gọi là vật được nối kết bất khả phân với vật khác đó; hoặc một đặc tính mà nó không bao giờ xảy ra trừ khi một đặc tính khác có mặt thì được cho là được nối kết bất khả phân với đặc tính khác đó.” Như vậy, không phải chỉ có s bất cứ khi nào có h, mà bất cứ khi nào không có s thì nhất định cũng không có h. Vì thế, định nghĩa này có dạng:

(6) ("x) ($y) {-h(x) & ("x) ("y) (x = y) ® -[s(x)]}

và dạng này có thể đơn giản hóa để cho công thức (5). Rõ ràng, định nghĩa lan truyền bằng sự nối kết bất khả phân cũng chính là định nghĩa nó qua sự không-tách-ly (avyabhicāritatva). Đây chính là ý nghĩa mà những người nối tiếp Thế Thân đã hiểu. Vì thế, khi Thế Thân phát biểu “cái mà qua đó sự nối kết bất khả phân được biểu thị, cái đó được gọi là thí dụ”, thì Pháp Xứng (Dharmakīrti) cũng đã lập lại tương tợ khi nói rằng “vì vậy, h đang lan truyền s vì có quan hệ cần thiết, và quan hệ này gồm hai loại, loại đồng nhất và loại ngoại động, và chính sự nối kết bất khả phân đó được biểu trưng bởi cả hai loại thí dụ”,[10] mặc dù trong Pramāṇavārttika, ông vẫn tiếp tục dùng từ avyabhicārita, không-tách-ly, thay vì avinābhāva, nối kết bất khả phân. Việc dùng từ “nối kết bất khả phân” để định nghĩa, hay ít ra, để hoán đổi từ ngữ “không-tách-ly” sau đó đã trở thành phổ biến không chỉ trong số những người theo Thế Thân mà còn cả những người thuộc các học phái khác, trong đó vị trí nổi bật nhất phải được dành cho Navyanaiyāyika, đặc biệt là Gangeśa và Mathurānātha. Chẳng hạn, trong khi giải thích từ avyabhicāra trong bài tụng 21 của phần Tự Suy Luận cuốn Nyāyabindu của Pháp Xứng, thì Pháp Thượng (Dharmottara) đã không ngần ngại xem nó tương đương với từ avinābhāva.[11] Mathurānātha, nếu không phải là Gangeśa, cũng vậy.

Trong cuốn Tattvacintāmani, khi bàn về vấn đề suy luận, Gangeśa đã dành trọn một phần để khảo sát sự lan truyền là gì, trong đó, ngoài ý kiến riêng của mình, ông đã bàn đến hai mươi mốt định nghĩa khác nhau mà ông cho là không thỏa đáng. Trong số đó, định nghĩa thứ mười chín cho rằng quan hệ lan truyền là loại quan hệ nối kết bất khả phân.[12] Định nghĩa này dĩ nhiên không gì khác hơn định nghĩa của Thế Thân. Khi bình giải nối kết bất khả phân là gì, Mathurānātha nói rằng đó là “những gì khác với sự xảy ra trong một nơi không có s.”[13] Nhưng khi giải nghĩa sự nối kết bất khả phân bằng các từ đó, rõ ràng ông đã đồng nhất định nghĩa đó với định nghĩa số 1 về sự không-tách-ly là gì, bởi vì cùng nhóm từ này đã được Gangeśa sử dụng để mô tả tính chất của không-tách-ly trong định nghĩa số 1 nói trên.[14] Định nghĩa số 1 nói rằng không-tách-ly có thể được định nghĩa là “sự không xảy ra [của h] ở nơi không có s” (sādhyābhāvavad-avṛttitvam). Như vậy, dù Gangeśa xem định nghĩa lan truyền bằng sự nối kết bất khả phân của nó như là một định nghĩa độc lập, Mathurānātha lập tức nhận ra rằng đó chỉ là một dạng khác của định nghĩa về không-tách-ly. Điều này hiển nhiên không làm chúng ta ngạc nhiên gì cả vì chúng ta đã thấy một sự nhìn nhận như thế xuất hiện trong các tác phẩm của cả Pháp Xứng và Pháp Thượng; đó là chỉ mới đề cập một vài luận sư đại biểu mà các nguyên tác Phạn ngữ của họ vẫn còn giữ và được mọi người biết đến.

Nguyên nhân chúng tôi nêu ra các diễn giải điển hình về những gì từ ‘nối kết bất khả phân’ ám chỉ xuất phát từ các kết quả luận lý của chúng nhiều hơn là sự quan tâm về mặt lịch sử. Chúng tôi đã nói rằng tất cả các tác phẩm luận lý của Thế Thân, như chúng ta có thể biết được ngày nay, đều chỉ còn giữ được trong các mảng rời rạc, chủ yếu bằng Hán văn và Tạng văn. Vì thế, chúng ta không có điều kiện thu thập đầy đủ tài liệu để có thể đạt đến một hiểu biết hợp lý về các lý thuyết luận lý chủ chốt của Thế Thân mà không phải nhờ vào các diễn giải khác có thể có được. Vì vậy, dù chúng ta biết được định nghĩa Thế Thân đã cho về sự nối kết bất khả phân và trường hợp trong đó nó được áp dụng, nhưng chúng ta vẫn không biết ông đã đạt đến một định nghĩa như thế bằng cách nào và nó có giá trị ở chừng mực nào. Sự phản bác được đưa ra về giá trị của một định lý phản chuyển là minh họa phù hợp nhất.

Ở đây, người phản bác Thế Thân, vốn dựa vào lập luận “tính chất không trường cửu của âm thanh được suy ra từ trạng thái sinh khởi của nó do một cố gắng (công lực sinh), đã trả lời rằng đây không phải là h đối với tính không trường cửu, vì trong trường hợp của tia chớp, v.v. tính không trường cửu được tri nhận nhờ các phương tiện nhận thức khác như hiện lượng, v.v.”; điều này rõ ràng muốn nói rằng, đối với ông ta, tình trạng sinh khởi do một cố gắng không phải là lý do cần và đủ (h) để khẳng định rằng một cái gì đó không trường cửu; bởi vì, như mọi người đều tự nhìn thấy, tia chớp, vốn không trường cửu, đã không “khởi do một cố gắng.” Cũng trong mảng luận thư còn lại đó, Thế Thân còn thêm rằng “những người khác trình bày điều này (tức sự phản bác) theo một cách khác: ‘Không có h đối với sự không trường cửu ở đây, vì không có sự lan truyền (vyāpti), giống hệt như trong trường hợp của luận thuyết cho rằng hoạt động có ý thức nhất thiết phải hiện hữu đối với cây cối, do chúng có ngủ vào ban đêm, một h chỉ xảy ra đối với loại cây śirīsa.’”[15]

Về lời phản bác thứ nhất, Thế Thân chỉ rõ rằng “chúng tôi không chủ trương mọi vật không trường cửu đều khởi do một cố gắng, mà chỉ chủ trương cái đã khởi do một cố gắng thì phải không trường cửu.”[16] Câu trả lời cho lời phản bác thứ hai nay đã mất. Tuy nhiên, chúng ta có thể đoán rằng một lập luận tương tợ chắc hẳn đã được ông đưa ra; đó là, chúng tôi không chủ trương tất cả các loại cây đều có hoạt động ý thức chỉ vì các cây śirīsa đã có hoạt động như thế do sự kiện chúng ngủ vào ban đêm. Những câu trả lời này dự kiến rõ ràng rằng chắc hẳn đã có một số bàn luận về cái lập thành sự lan truyền và, từ đó, về sự nối kết bất khả phân. Bởi vì khi chủ trương một định lý nào đó là đúng ở dạng thông thường của nó chứ không phải ở dạng phản chuyển, tức cũng muốn nói rằng sự lan truyền và nối kết bất khả phân phải có giới hạn nào đó, mà vượt ra khỏi giới hạn này thì nó không thể ứng dụng được. Thế nhưng, những luận bàn như thế, nếu có xảy ra, bây giờ cũng không thể tìm thấy.

Trần Na than phiền rằng trong khi Thế Thân nêu ra các lập luận sai luận lý, ông chỉ đưa ra trường hợp và thí dụ của nó mà không có nhận xét nào về khía cạnh lý thuyết.[17] Lời than phiền này có thể xác chứng dựa vào những gì chúng ta biết được ngày nay. Tuy nhiên, cần lưu ý rằng nếu Thế Thân không bàn đến khía cạnh lý thuyết của nhiều lập luận sai luận lý khác nhau thì có thể đây là trường hợp do ông đã tiến hành một sự tra cứu triệt để trước đó khi tiếp cận vấn đề lan truyền và định nghĩa của nó bằng sự nối kết bất khả phân. Chúng ta có thể suy đoán một trường hợp như thế, bởi vì từ những gì còn lưu giữ được, chúng ta biết rằng Thế Thân thực sự đã tỏ ra quan tâm đến một định nghĩa chính xác về lan truyền là gì.

Sau khi định nghĩa lan truyền là sự nối kết bất khả phân, có nghĩa là “một vật mà nó không bao giờ xảy ra trừ khi có mặt một vật khác thì được gọi là cái được nối kết bất khả phân với vật khác đó; hay, nói cách khác, một đặc tính mà nó không bao giờ xảy ra trừ khi có mặt một đặc tính khác thì được nói là được nối kết bất khả phân với đặc tính khác đó”, thì Thế Thân tiếp tục nói rằng “thí dụ như âm thanh không bao giờ xuất hiện tách rời với sự không trường cửu, bởi vì cái đã khởi do một cố gắng không bao giờ xảy ra mà lại tách rời với sự không trường cửu, và tương tợ như thế, khói không bao giờ xảy ra tách rời với lửa.”[18] Phát biểu thêm này nhằm đưa ra một số thí dụ cho định nghĩa của ông và chỉ rõ những gì ông muốn nói về giới hạn cũng như sự áp dụng định nghĩa của ông về lan truyền là sự nối kết bất khả phân và nội dung của nó “một vật hay một đặc tính mà nó không bao giờ xảy nếu như không có sự hiện diện của một vật hay một đặc tính khác thì được nói là được nối kết bất khả phân với vật hay đặc tính khác đó.” Ông hẳn đã biết chắc rằng trạng thái sinh khởi do một cố gắng có thể được cho là “được nối kết bất khả phân” với sự không trường cửu của âm thanh, nhưng chắc chắn không nối kết với sự không trường cửu của tia chớp, điều mà chính ông đã chỉ rõ. Nói cách khác, định lý phát biểu rằng bất kỳ vật gì đã khởi do một cố gắng đều không trường cửu là một phát biểu đúng, nhưng không đúng trong trường hợp ngược lại, tức bất kỳ vật gì không trường cửu cũng đều khởi do cố gắng. Trong trường hợp của khói và lửa cũng thế: phát biểu bất kỳ khi nào có khói tất cũng có lửa là một phát biểu đúng, nhưng không phải bất kỳ lúc nào có lửa cũng đều phải có khói. Như vậy, qua các phát biểu này hiển nhiên Thế Thân phải biết rằng định nghĩa của ông về lan truyền qua sự nối kết bất khả phân có thể được áp dụng và thực hiện ở mức độ nào và ông đã bàn đến điều này trong phạm vi tra cứu định nghĩa đó. Nếu không, có lẽ đối thủ của ông đã chỉ ra các khuyết điểm của chính định nghĩa đó, viện lẽ rằng định nghĩa này thiếu tính phổ quát đối với tất cả các trường hợp thuộc về nó, và vì thế quá hạn hẹp không thật sự phục vụ được mục đích mà nó phải phục vụ như người ta nghĩ.

Giả định của chúng ta được xác chứng thêm bởi sự im lặng đồng loạt của những người nối tiếp Thế Thân. Họ tiếp tục sử dụng định nghĩa đó và thuyết minh bằng các thuật ngữ mới như avyabhicāra, không-tách-ly, mà không biểu lộ nghi vấn nào. Trần Na là người đầu tiên giới thiệu từ avyabhicāra như là từ đồng nghĩa với avinābhāva và cũng dùng từ nāntarīyaka để thay cho từ avinābhāva. Thật vậy, các bản dịch Tây Tạng có khi đã dùng cách diễn đạt tương tợ để dịch các từ mới này; chẳng hạn như dùng med na mi hbyun ba để dịch cả từ avinābhāva và nāntarīyaka, mặc dù med na mi hbyun ba là thành ngữ tiêu chuẩn để dịch từ avinābhāva.[19] Dĩ nhiên tình trạng có vẻ như thiếu sự diễn đạt riêng biệt ở đây không làm chúng ta ngạc nhiên, bởi vì trong cuốn Nyāyavārttika, Uddyotakara đã cho chúng ta biết rằng Trần Na định nghĩa từ nāntarīyaka như sau: yo’rtho yam artham antarena na bhavati, sa nāntarīyakaḥ, “một vật không xảy ra nếu không có vật khác là nāntarīyaka.”[20] Thật vậy, những gì Trần Na nói về nāntarīyaka rất khớp với avinābhāva, vì định nghĩa của ông hoàn toàn giống với định nghĩa của Thế Thân về hai từ này.[21] Vì vậy, như Frauwallner đã nhận ra, từ những gì còn giữ được, chắc chắn Thế Thân đã khởi xướng cách dùng các từ này và đã dùng chúng thế chỗ cho nhau như các từ đồng nghĩa.[22]

Về từ avyabhicāra, chúng ta đã nói rằng Trần Na là người đầu tiên giới thiệu nó, mặc dù với những thông tin rải rác thu nhặt được về các tác phẩm luận lý của Thế Thân, chúng ta vẫn có thể nói rằng có lẽ Thế Thân là người đầu tiên sử dụng từ này. Dù gì đi nữa, khi mà những người nối tiếp Trần Na cũng như những người phê bình ông đều xem nó là từ có thể hoán chuyển cho hai từ kia thì ta có thể đoan chắc rằng nó thật sự chứa đựng cùng một nghĩa và hàm ý như thế. Chúng ta đã thấy Pháp Xứng và Pháp Thượng dùng chúng như các từ đồng nghĩa. Cả Uddyotarakara và Vacaspatimiśra cũng thế, mặc dù với sự chính xác hơn và sự đồng nhất đáng kể. Họ chuyên dùng từ avinābhāva khi mô tả và phê phán thuyết lan truyền của cả Thế Thân và Trần Na, mặc dù đôi khi cũng có nhắc đến hai từ kia.[23] Vì thế, ta có thể chắc chắn rằng tất cả ba từ này, avinābhāva, nāntarīyaka và avyabhicāra, cho đến thời của Gangeśa, đều được dùng thay cho nhau và có cùng nghĩa. Vào thời của Gangeśa, hình như ông đã tách từ đầu với hai từ sau thành hai phạm trù khác nhau, như ta đã thấy, bằng cách gom năm định nghĩa của avyabhicāra vào một nhóm và định nghĩa của avinābhāva vào một nhóm riêng trong bảng liệt kê của ông về các định nghĩa lan truyền. Ta cũng đã thấy rằng một sự phân chia như thế, nếu có xảy ra, đã được Mathurānātha nhanh chóng điều chỉnh khi chính xác nhận ra nó không là gì khác hơn một dạng khác của định nghĩa số 1 về sự không-tách-ly. Như vậy, kể từ thời của Thế Thân và Trần Na, cả ba từ này đã được dùng đồng nghĩa và hoán đổi cho nhau.

Mục đích của chúng ta khi tái lập việc sử dụng các từ này về mặt lịch sử là nhằm đạt đến một sự hiểu biết sâu hơn về những gì Thế Thân muốn nói khi ông định nghĩa lan truyền bằng sự nối kết bất khả phân, bởi vì sự kiện các tác phẩm luận lý của ông chỉ còn lại các mảng rời rạc đã không giúp chúng ta xác định trọn vẹn ý nghĩa cũng như hàm ý chính xác của các từ này. Nay, ta biết rằng “nối kết bất khả phân” đồng nghĩa với “không-tách-ly”; và, theo thông tin của Gangeśa, không-tách-ly có thể được định nghĩa ít nhất theo năm cách, như đã được hiểu đến thời ông. Ông nói:[24]

Nay, đối với sự hiểu biết về lan truyền, tức nguyên nhân của một suy luận, thì lan truyền là gì? Nó không chỉ là sự không-tách-ly của h đối với s, vì nó không phải là sự không-tách-ly đó vốn được định nghĩa là sự không-xảy-ra của h ở nơi không có s (1), cũng không phải là sự không-tách-ly được định nghĩa là sự không-xảy-ra của h ở nơi không có s vốn khác với nơi có s (2), cũng không phải là sự không-tách-ly được định nghĩa là h có một nơi khác với nơi không tồn tại cả hai mà đối hữu của nó là một nơi có s (3), cũng không phải là sự không-tách-ly được định nghĩa là h vốn là đối hữu của sự không tồn tại ở tất cả các nơi không có s (4), cũng không phải là sự không-tách-ly được định nghĩa là sự không-xảy-ra của h ở những gì khác hơn nơi có s (5), bởi vì lúc đó nó sẽ không thể áp dụng cho các trường hợp thực hữu- phổ biến.

Như vậy, đến thời Gangeśa, không-tách-ly có thể được định nghĩa ít nhất theo năm cách khác nhau, như đã nêu trong đoạn dịch trên. Năm định nghĩa này, nếu ta thuyết minh bằng luận lý toán học thì có thể dễ dàng chứng minh chúng tương đương với nhau, dù rằng trong ngôn ngữ thông thường chúng hình như tách biệt nhau như ta có thể tưởng tượng. Nhiều nhà nghiên cứu đã cố thuyết minh chúng, và không may các kết quả đó đã đặt ra nhiều vấn đề, do cách dùng các ký hiệu khác nhau và các khái niệm luận lý toán học của riêng từng người trong số họ.[25] Chẳng hạn như thuyết minh gần đây nhất và thỏa đáng nhất hiện nay của Berg về các định nghĩa này như sau:[26]

(i) ("x) – {h(x) ٨ x Î [y: – s(y)]}

(ii) ("x) – [(h) ٨ x Î (y: ("x) (s(z) ® y ≠ z)]

(iii) ($F) [("x) ("y) {[h(x) ٨ – F(y)] ® x ≠ y)] ("x) (F(x) ® s(x))]

(iv) ($F) {("x)[h(x) ® F(x) ٨ ("x) [– s(x) ® – f(x)]}

(v) ("x) – [h(x) ٨ – s(x)]

trong đó F chỉ cho đối hữu (pratiyogika) của một sự không tồn tại hỗ tương (anyonyābhāva), -F, đối với h; và trong đó {y:s (y)} đọc là ‘nơi có s’, tức, vật thể y có s. Thuyết minh trên của Berg, như đã nói, là thỏa đáng nhất vào lúc này. Tuy nhiên với việc đưa vào ký hiệu Î, nó lại đặt ra vấn đề có phải khái niệm không-tách-ly, như đã được Thế Thân và Trần Na cùng với những người tiếp nối họ nhận thức từ đầu, có chứa đựng và chuyển tải khái niệm về chủng loại không, nhất là khi chính ký hiệu Î có khả năng được diễn dịch và ứng dụng theo nhiều cách khác nhau. Thí dụ, ta có một số lý thuyết song hành với nhau liên quan đến khái niệm về chủng loại như thuyết của Russell, Zermelo, v.v., và mỗi thuyết đều có giá trị và khó khăn riêng của chúng.[27] Chúng ta biết chắc rằng Trần Na bác bỏ khái niệm đó, khi nó được những người cùng thời ông đeo bám, bằng cách trình bày khái niệm này một cách hài hước như sau: “Nó (chủng loại) không đi, nó không đứng, nó không tồn tại sau đó, nó không có thành phần, nó không rời chỗ chứa của nó trước đó – đúng là cả một lô khuyết điểm!”[28]

Tuy nhiên ông vẫn đưa ra thuyết của mình về điều này, theo đó chủng loại không phải là một lãnh vực của các thực thể tự tồn tại, mà là một khái niệm trừu tượng có thể được định nghĩa như thế nào đó để cho không một thực thể nào được mặc định và được gán cho một thực tại tính. Như vậy, nếu chữ ‘bò’ có thể áp dụng cho cả một loạt các thực thể riêng biệt có các đặc tính như thế-và-như thế, thì sẽ không cần phải giả định sự tồn tại của bất kỳ thực thể nào được gọi là ‘tính chất bò’, một tính chất mà các cá thể có tên là ‘bò’ đó đều có phần. Thay vì thế, người ta quan niệm rằng một khả năng ứng dụng rộng rãi như thế xảy ra bởi vì chữ ‘bò’ loại bỏ bất cứ cái gì không phải là bò.[29] Thuyết về chủng loại này dĩ nhiên có các giá trị riêng của nó, cho dù các tính chất nặng nề của nó đã được chúng ta chỉ ra ở chương trước.

Đối với quan niệm chủng loại của Thế Thân, dù ta có thể chắc chắn rằng ông đã bác bỏ, giống như Trần Na, ý tưởng về sự tồn tại của nó như một thực thể kiểu Plato, ta vẫn không nắm chắc điều gì cả về những suy luận đặc trưng ông có trong đầu, nhất là đối với thuyết lan truyền của ông. Mặc dù điều này, ta phải lưu ý rằng, trong khi phê phán thuyết về từ ngữ của Tỳ Bà Sa, thuyết đã đặt nền tảng cho thuyết mô tả của ông, Thế Thân đã mạnh mẽ phủ nhận nhu cầu phải giả định sự tồn tại của các thực thể như “số” hoặc “khoáng trương” để giải thích các từ ‘một, hai’ hoặc ‘dài, ngắn’, vì theo ông những từ đó và tương tợ có thể được thay thế bởi các nhóm từ khác tương đương. Vì thế, ngay khi khái niệm chủng loại và biểu tượng của nó được đưa vào, ta luôn luôn có thể thay chỗ nó bằng một mô tả đúng, tức, nếu có một chủng loại j như thế để cho đối với tất cả x thì x Î j , ta luôn luôn có i(j) N(j). Như vậy, có thể lập luận rằng Berg đã chính xác khi đưa ký hiệu Î vào thuyết minh của ông về năm định nghĩa về sự không-tách-ly, nếu đó là các định nghĩa của Thế Thân. Thế nhưng, theo hiểu biết hạn hẹp hiện nay của chúng ta về các tác phẩm luận lý của Thế Thân, chúng ta phải nhìn nhận rằng, như đã nói trước đây, khái niệm không-tách-ly thuộc về thuật ngữ của Trần Na, và như vậy việc đưa vào một ký hiệu như thế tương đối không cần thiết, nhất là khi nó có thể tạo ra rắc rối và ngộ nhận. Vì vậy, chúng tôi đề nghị trình bày lại năm định nghĩa này ở đây, chỉ dựa vào quan hệ đồng nhất hơn là chủng loại.

(7) ("x) – {(h(x) & ("x) ("y) (x = y) ® [("y) – s(y)]}

(8) ("x) – {h(x) & ("x) ("y) (x = y) ® [("y) ("z) s(z) ® y ≠ z)]}

(9) ($F) {("x) ("y) [(h(x) & - F(y)]} ® {(x ≠ y) & ("x) [F(x) ® s(x)]}

(10) ($F) {("x) [h(x) ® F(x)] & ("x) [– s(x) ® – F(x)]}

(11) ("x) – {h(x) & ("x) ("y) (x ≠ y) ® [("y) s(y)]}

Với thuyết minh mới này, ta có thể dễ dàng chứng minh năm định nghĩa này tương đương với nhau về mặt luận lý và chuyển tải chính xác quan niệm lan truyền, như đã được Thế Thân định nghĩa trong phạm vi của khái niệm về sự nối kết bất khả phân. Một kết quả như thế chắc chắn không gây nhiều ngạc nhiên nếu xét đến sự kiện Gangeśa đã liệt kê chúng như những dạng khác nhau của định nghĩa đầu tiên về sự không-tách-ly. Hơn nữa, Mathurānātha khi bình giải đoạn văn của Gangeśa cũng đã nhận ra được chúng đồng nhất với nhau qua việc chỉ ra các trường hợp trong đó mỗi định nghĩa sẽ không áp dụng được do sự khiếm khuyết của nó. Như vậy, ông đã sử dụng trường hợp tương tợ của một suy luận rằng “nó sở đắc sự tiếp xúc với một con khỉ bởi vì nó là cây này”, trong đó ba định nghĩa đầu không áp dụng được và vì thế không có giá trị, nếu ta không kể đến định nghĩa thứ tư cũng có loại suy luận đó trong số những suy luận khác thuộc các trường hợp mà nó không đúng đối với chúng.[30] Về định nghĩa thứ năm, Mathurānātha đã nhét nó vào giữa các đoạn văn khác trong giải thích của ông về định nghĩa thứ nhất như ông đã thừa nhận.[31] Ngoài ra, ông còn lưu ý rằng định nghĩa thứ ba có thể được diễn dịch để có nghĩa giống như định nghĩa thứ năm,[32] dù ông có thêm rằng chúng có thể có sự khác nhau riêng.[33]

Việc nhận ra sự tương đương của năm định nghĩa này còn được xác chứng thêm bởi phương pháp ngày nay. Goekoop, sau khi chính thức hóa chúng bằng luận ký học ký hiệu hàm số diễn toán lần thứ nhất (first-order predicate calculus), đã không bằng lòng với việc chỉ phát biểu rằng chúng tương đương với nhau về mặt luận lý mà còn khẳng định rằng chúng cũng tương đương với chính định nghĩa về lan truyền, vốn đã được chứng minh là có giá trị. Ông nói, “Sự kiện năm định nghĩa tương đương với nhau về luận lý và với công thức (6) của sự lan truyền có thể được chứng minh dễ dàng bằng vi tích phân mà qua đó chúng ta đã thuyết minh chúng.”[34] Lý do chúng không chỉ tương đương với nhau về luận lý mà còn tương đương với định nghĩa có giá trị về sự lan truyền sẽ được bàn đến sau. Nay, chúng ta nên trở lại các giải thích của Mathurānātha để xem các trường hợp ông nói đến có liên hệ như thế nào với thuyết lan truyền và định nghĩa về nó của Thế Thân.

Chúng ta đã nói rằng đối với Mathurānātha, định nghĩa thứ năm tương đương với định nghĩa thứ nhất, và cũng tương đương với định nghĩa thứ ba ở phương diện nào đó. Sau khi giải thích làm thế nào để diễn dịch nhóm từ “khác hơn nơi có s” của định nghĩa đó, ông nhận xét rằng “như vậy định nghĩa này không bao quát để áp dụng nơi [có một suy luận sai] như ‘Nó có khói vì nó có lửa’, cho dù trong h có sự không-xảy-ra đối với một cái hồ, v.v., vốn khác hơn nơi có khói, và cho dù trong h không có sự kết hợp của nước và sự xảy ra đối với cái khác hơn nơi có khói.”[35] Nhận xét này thú vị ở điểm nó dẫn chúng ta trở lại một trường hợp suy luận được Thế Thân xem là chứng cứ sai do sự chuyển hoán của nó mà chúng ta đã thuật lại ở trên. Trong đó, đối thủ của ông, vì dựa vào suy luận thông thường cho rằng ‘âm thanh thì không trường-cửu vì khởi do cố gắng’, đã chứng minh một suy luận như thế là sai lầm bởi vì có các vật khác như chớp, v.v cũng không trường cửu nhưng không khởi do cố gắng. Thế Thân thừa nhận sự kiện chớp là không trường cửu và không khởi do cố gắng là một sự kiện có thật. Tuy nhiên, suy luận ‘âm thanh là không trường cửu vì khởi do cố gắng’ cũng là một suy luận đúng chứ không phải sai do sự kiện trên. Trái lại, nếu có một suy luận sai thì nó thuộc về phía của đối thủ ông, và điều này là đúng. Đối thủ ông nghĩ rằng nếu một phát biểu là đúng thì trường hợp phản chuyển của nó cũng đúng. Như vậy, nếu suy luận cho rằng bất kỳ cái gì khởi do cố gắng đều không trường cửu là một suy luận đúng, vậy thì phản chuyển của nó là bất kỳ cái gì không trường cửu đều khởi do cố gắng cũng phải đúng, một điều rõ ràng không đúng. Vì vậy, sự ứng dụng sai cách nói phản chuyển như trên được Thế Thân nắm rõ và nó cũng xuất hiện trong nhận xét của Mathurānātha khi giải thích nội dung định nghĩa thứ năm. Một lần nữa, nếu có một quan hệ sít sao như thế giữa chúng với nhau thì điều này cũng không gây nhiều ngạc nhiên. Chúng ta có thể chỉ so sánh phần trình bày định nghĩa thứ năm với phần trình bày định nghĩa thứ nhất và với công thức (6) để thấy rằng chúng thật sự tương đương nếu không phải là hoàn toàn đồng nhất.

Với sự kiện năm định nghĩa được chứng minh không những tương đương với nhau về luận lý mà còn cả với định nghĩa có giá trị về sự lan truyền, chúng ta phải tự hỏi tại sao Gangeśa khẳng định rằng “chúng không áp dụng được trong trường hợp các thực tại phổ biến (universal-positive).” Mathurānātha làm rõ hơn khẳng định đó như sau:

Vì tất cả những định nghĩa này quá hạn hẹp không thể áp dụng nơi s là một thực hữu-phổ biến, tác giả của chúng ta phê bình tất cả với lời lẽ ‘vì lan truyền không phải là bất kỳ định nghĩa nào trong số này nơi s là một thực hữu-phổ biến.’ Ý của ông là: (a) lan truyền không phải là bất kỳ định nghĩa nào trong năm định nghĩa này nơi s xảy ra hoàn toàn và là một thực hữu-phổ biến, như trong những suy luận có giá trị như ‘Nó được đặt tên vì nó được biết đến’; và (b) lan truyền không phải là bất kỳ định nghĩa nào trong bốn định nghĩa cuối nơi s không hoàn toàn xảy ra và thực hữu-phổ biến, như trong các suy luận có giá trị như ‘Nó sở đắc sự không tiếp xúc với một con khỉ vì nó sở đắc thực tại.’ Điều này bởi vì [trong trường hợp (a)] người ta không thể tìm thấy thí dụ nào về sự không tồn tại của s mà cái đối hữu bị giới hạn đối với nó bởi quan hệ hạn chế của tính khả chứng, cũng không thể tìm thấy một thí dụ về sự không tồn tại hỗ tương mà cái đối hữu bị giới hạn đối với nó bởi tình trạng của s có chỗ của nó mà chỗ này bị giới hạn bởi quan hệ hạn chế của tính khả chứng; và vì [trong trường hợp (b)] người ta không thể tìm thấy thí dụ nào về nơi không giới hạn trong s trong những suy luận như ‘Nó sở đắc sự không tiếp xúc với một con khỉ vì nó sở đắc thực tại.’[36]

Đó thực sự là một minh giải rất hữu ích ở điểm nó cho chúng ta thông tin về những gì Gangeśa đặc biệt có trong đầu ông khi ông sử dụng từ “thực hữu-phổ biến” để phê phán năm định nghĩa về sự không-tách-ly. Các “thực hữu-phổ biến” là các trường hợp trong đó có một từ không thể phủ định trong số các từ lan truyền. Như vậy, trong trường hợp những suy luận như ‘Nó có thể được đặt tên vì nó có thể được biết đến’, Gangeśa và bộ phái của mình đòi hỏi rằng những từ như ‘có thể đặt tên’ và ‘có thể biết đến’ là không thể phủ định được, nhất là từ ‘có thể biết đến’; trong Phạn văn, do tập quán ngôn ngữ nên từ này có dạng của một danh từ, jñeyatva, sự khả tri, và vì thế, yêu cầu rằng ‘một vật thể không bao giờ xảy ra trừ khi một vật thể khác có mặt’ thì không được đáp ứng. Và yêu cầu này là nền tảng của tất cả năm định nghĩa trên. Kết quả là chúng cũng không được đáp ứng do trường hợp đó.

Hiển nhiên, ta có thể loại bỏ phê bình của Gangeśa vì nó chỉ là một nhận xét mang tính bộ phái về một quy luật phổ quát, trong đó giáo điều của ông không thể vận dụng trôi chảy, và vì lẽ đó, không đáng được xét đến. Hơn nữa, chúng ta đã giả định rằng năm định nghĩa đó, vốn tương đương với nhau về mặt luận lý và chuyển tải đủ quan niệm của Thế Thân về sự nối kết bất khả phân, thì cũng tương đương về luận lý với định nghĩa có giá trị về sự lan truyền, định nghĩa mà ta có thể vạch ra một cách thuận lợi nhất. Vì thế, không cần phải bàn cãi về phê phán của Gangeśa. Ngoài ra, nếu xét giá trị ở bề mặt thì suy luận thuộc loại ‘Nó có thể được gọi tên vì nó có thể được biết đến’ lại tạo ra một số khó khăn rất nghiêm trọng. Chẳng hạn, dù Goekoop đã cố gắng chứng minh tại sao năm định nghĩa này ứng dụng rất thích hợp với suy luận thuộc dạng ‘Nó có lửa vì nó có khói’, nhưng hoàn toàn không thể ứng dụng cho trường hợp ‘Nó có thể được gọi tên vì nó có thể được biết đến’, cho dù khẳng định chính xác mà ông đã đưa ra “Từ một quan điểm thuần luận lý thì năm định nghĩa đều đúng...”[37], người ta vẫn có thể dễ dàng rút ra một mâu thuẩn đối với suy luận thuộc dạng sau; như vậy, suy luận này sẽ tự triệt tiêu khỏi bất kỳ sự bàn luận nào, huống hồ là phải chứng thực và suy luận về nó.

Thật ra, trước đó không lâu Potter đã chỉ ra rằng nếu ta chọn châm ngôn nổi tiếng của Naiyāyika, nói rằng “tồn tại là có thể được biết đến và đặt tên” mà suy luận thuộc dạng sau rõ ràng đã bắt nguồn từ đó, ít ra ở giá trị bề mặt của nó, thì ta có thể có một nghịch lý sau: “Trong Phạn ngữ hoặc bất kỳ một ngôn ngữ phong phú nào khác, từ ‘không thể đặt tên’ hay một chuyển ngữ của nó đều có thể được thốt ra. Nay châm ngôn trên, vì áp dụng từ này, sẽ tạo ra một nghịch lý: bởi vì từ ‘không thể đặt tên’ được thừa nhận như một tên gọi, cho nên có tồn tại cái không thể đặt tên; nhưng vì mọi vật có tồn tại đều có thể đặt tên cho nên những cái không thể đặt tên đều có thể được đặt tên; điều này tự mâu thuẩn.”[38] Sửa đổi nghịch lý này với một số chữ thay thế, người ta có thể có sự tự mâu thuẩn sau đây đối với suy luận trên: cái gì đó được đặt tên vì nó được biết đến:

Không-thể-đặt-tên là một cái gì đó và nó chắc chắn có thể được biết đến.

Vì thế, không-thể-đặt-tên thì có thể đặt tên vì nó là cái gì đó có thể được biết đến.

Rõ ràng, như chính Potter đã nhận ra, những châm ngôn và suy luận như vừa được đề cập sẽ không được xét đến theo giá trị bề mặt mà là theo thể hệ trong đó chúng vận hành, để chúng có thể được hiểu và đánh giá đúng. Trong khi khảo nghiệm, Goekoop đã xét suy luận đó theo giá trị bề mặt và vì thế đã chịu rủi ro không chính xác trong việc đánh giá năm định nghĩa trên.
Thế nhưng, chính vì sự tồn tại của các khó khăn nghiêm trọng trong suy luận đó mà nó đáng được tìm hiểu. Thật vậy, nếu ta đạt đến nghịch lý ‘cái không-thể-đặt-tên thì có thể đặt tên’, nó sẽ lập tức làm chúng ta nhớ đến nghịch lý của Russell về thuyết chủng loại, trong đó sự sai lầm thuộc loại:

($x) [(x Î x) ↔ -(x Î x)]

thì có thể chứng minh.[39] Nó dẫn chúng ta đến câu hỏi có phải thuyết lan truyền của Thế Thân có liên hệ đến thuyết chủng loại hay không, và câu trả lời của nó chúng ta sẽ trở lại ở cuối chương này. Ở đây, ta cần để ý rằng phê phán của Gangeśa không hẳn vô giá trị nếu được xét và đánh giá đúng. Thật vậy, ta biết rằng với một luận lý chủng loại nào đó, nếu ta có thể dịch các phát biểu thuộc một luận lý định lượng nào đó thành luận lý chủng loại này, một cách dịch mà ai cũng biết là có thể thực hiện bởi các quy tắc, thì sẽ có những phát biểu trong luận lý chủng loại đó không thể diễn tả được nếu chỉ dựa vào giá trị của luận lý định lượng.[40] Và đây thật sự là nguồn gốc phát sinh quan niệm về chủng loại trước tiên. Như vậy, những từ được cho là không thể phủ định mà Gangeśa đã đề cập thì không còn mang tính chất không-thể-phủ-định nhiều như những từ thuộc về chủng loại. Chúng ta biết điều này bởi vì suy luận ‘Nó được đặt tên vì nó được biết đến’, nếu căn cứ cách diễn giải nghiêm ngặt của Naiyāyika, thật sự không gì khác hơn suy luận thuộc loại đồng nhất bởi lẽ ‘có thể đặt tên’ và ‘có thể biết’ đều là đặc tính của một vật thể. Cách diễn giải nghiêm ngặt, mà ta đã nhắc đến, là cách này. Người ta thường lưu ý rằng “theo Nyāya, có một số thực thể mà sự vắng mặt của nó không có nơi chốn; một thực thể như thế là đặc tính của sự có-thể-được-đặt-tên (vācyatva, abhidheyatva), hay đặc tính của sự có-thể-được-biết-đến (jñeyatva).”[41]

Với sự kiện Naiyāyika “chủ trương mọi từ ngữ trong một nhận thức có giá trị phải tương ứng với một thực thể đang tồn tại nào đó trong vũ trụ”, người ta sẽ tự hỏi vācyatva và jñeyatva, hai từ có giá trị đối với ông, đang biểu thị một hay hai thực thể. Thoạt nhìn, hình như chúng phải chỉ cho hai. Tuy nhiên, nếu nhìn lại thì chắc chắn sẽ không phải như vậy nhờ vào giải thích của Uddyotakara. Trong luận thư Kiranāvali, khi bàn về vấn đề chủng loại, Uddyotakara có nói đến sáu qui tắc ngăn không cho cái gì đó là một chủng loại, và trong số đó qui tắc thứ hai gọi là “tương đẳng” (tulyatva) có thể được phát biểu như sau: một biểu thức ‘x-tva’, áp dụng chính xác cho cùng các cá thể giống như một biểu thức ‘y-tva’ khác, có thể không biểu thị một nguyên tắc phổ quát thứ hai khác biệt với nguyên tắc phổ quát mà ‘y-tva’ biểu thị.[42] Như vậy, suy luận “Nó có thể được đặt tên vì nó có thể được biết đến” thật sự là một trùng phức vô vị, bởi vì nó nối kết hai từ không những cùng dùng cho các thực thể giống nhau mà còn biểu thị cùng một thực thể.

Vậy thì, những gì chúng ta có về suy luận đó không phải là kiểu suy luận thuộc luận lý đồng nhất hay định lượng mà đúng hơn là luận lý cổ điển. Vì vậy, việc so sánh nó với suy luận kiểu ‘Nó có lửa vì nó có khói’, như Goekoop đã làm, thì không minh xác nếu không phải là “không được chứng minh bằng thí dụ”, như Goekoop muốn nói. Chắc chắn, kiểu lý kuận sau có thể được xem là hàm chứa khái niệm chủng loại, giống hệt như tam đoạn luận tiêu chuẩn kiểu Aristote. Tuy nhiên, với việc tiếp tục bàn cãi về vấn đề có phải luận lý học Ấn độ, nhất là luận lý Trần Na và trường phái của ông, là nội hàm hay ngoại trương,[43] và về việc Trần Na bác bỏ thuyết chủng loại thuộc kiểu Uddyotakara đại biểu và chúng ta đã nhắc đến ở trên, thì tốt hơn là hãy tách biệt hai kiểu suy luận này.

Hơn nữa, suy luận “Nó có thể được đặt tên vì nó có thể được biết đến” có thể rút ra một cách dễ dàng từ qui tắc tương đẳng của Uddyotakara, trong khi đó suy luận “Nó có khói vì nó có lửa” thì không thể, bởi lẽ các thuộc từ của suy luận đầu không chỉ áp dụng cho các thực thể giống nhau mà còn biểu thị cùng một thực thể, trong khi các thuộc từ của suy luận thứ hai thì không. Lửa và khói không áp dụng chính xác cho các thực thể giống nhau, vì chúng ta có lửa của một hòn sắt nóng mà nó không có khói, và cả hai cũng không biểu thị cùng một thực thể, vốn là kết quả tự nhiên của trường hợp đầu. Điểm khác biệt cơ bản đó sẽ không làm ngạc nhiên, vì người ta đã gợi ý rằng qui tắc tương đẳng của Uddyotakara có thể được thuyết minh và nên được diễn giải như là định lý khoáng trương trong lý thuyết tập hợp: Nếu A và B là các tập hợp và nếu mọi yếu tố của A là một yếu tố của B, và ngược lại, thì A = B.

(12) x = y ↔ ("w) (x Î w ↔ y Î w)

Cho dù thuyết minh và diễn dịch này có thể được chứng minh là sai hay không khớp,[44] vẫn không có bất cứ nghi ngờ gì về trường hợp nào mà qui tắc đó áp dụng và về hàm ý mà nó chuyển tải trong các suy luận thuộc kiểu ‘Nó có thể được đặt tên vì nó có thể được biết đến.’ Nhưng nếu thuyết minh đó hay một thuyết minh tương tợ nào đó có cùng dạng được chứng minh là đúng cùng với một số định lý khác, thì ta có thể hy vọng một nghịch lý thuộc loại trên sẽ tự nhiên nảy sinh.

Vì thế, cần lưu ý rằng trong khi rút ra nghịch lý thú vị nói trên về cái không-thể-đặt-tên từ châm ngôn “tồn tại là có thể được biết đến và đặt tên”, Potter đã xin lỗi Naiyāyika. Ông nói rằng nếu ta có thể rút ra một nghịch lý như thế thì đó không phải là lỗi của hệ Naiyāyika, bởi vì, ông lập luận, trong hệ thống đó sẽ có một cơ cấu nào đó ngăn không cho những từ như ‘không-thể-đặt-tên’ nhập vào phạm trù những cái có-thể đặt-tên và vì thế nghịch lý sẽ không xảy ra. Đúng ra là chúng ta có lỗi khi tách châm ngôn đó ra khỏi phạm vi ngôn ngữ lý tưởng của họ và rồi ứng dụng sai lạc vào thế giới biện luận thông thường, điều đã khiến cho nghịch lý này xuất hiện. Tuy nhiên, lời xin lỗi này không cần thiết và gây ngộ nhận. Bởi vì rõ ràng Potter đã quên rằng nhiều hệ ngôn ngữ lý tưởng khác nhau của thế kỷ này vẫn sa vào các nghịch lý, những hệ ngôn ngữ mà trong phạm vi nào đó nhất định còn mãnh liệt và được tổ chức chu đáo một cách rộng rãi hơn cả hệ ngôn ngữ của Naiyāyika. Theo một tính toán mới đây thì số lượng các nghịch lý này không dưới con số mười bảy và đã khiến cho một nhà luận lý toán học nổi tiếng phải “đau khổ” ý thức rằng những lý thuyết toán học ngày nay có thể bị sai lầm nghiêm trọng.[45]

Đó là chưa kể đến những nghịch lý khác dường như đã có sẵn trong ngôn ngữ hàng ngày của chúng ta như nghịch lý của Người Nói Láo của Epimenides hay nghịch lý về phần Người Nói của Long Thọ. Như vậy, nếu có thể rút ra một nghịch lý từ học thuyết chính “tồn tại là có thể được biết và được đặt tên” của Naiyāyika thì tại sao người ta lại cần phải xin lỗi về điều đó? Thật vậy, nếu một nghịch lý xảy ra trong một hệ thống, ta nên dành thì giờ tìm xem tại sao và từ đâu nó đã xuất hiện, để có thể tiếp cận tính chất liên quán cũng như giá trị của nó. Dù sao lời xin lỗi của Potter vẫn nghe có vẻ hoài cổ và hiếu kỳ; nó làm chúng ta nhớ đến thời Uddyotakara còn sống và hăng hái dự vào những cuộc tranh biện với các đối thủ của ông.

Ngoài lời xin lỗi ra, giờ đây đã rõ rằng điều Gangeśa muốn nói khi đề cập đến tính bất khả dụng của năm định nghĩa về sự không-tách-ly không phải là chúng không thể ứng dụng vào những trường hợp thực hữu-phổ biến vốn được định nghĩa hoặc bằng các từ ngữ không thể phủ định hoặc bằng sự thiếu vắng các thí dụ không tương tợ, mà là chúng không thể ứng dụng cho những trường hợp nào đó trong một luận lý chủng loại. Chúng ta bàn luận dài dòng về phê phán của Gangeśa cốt để có thể trình bày các quan niệm cơ bản đã không thể được giải thích rõ ràng qua những gì mà từ ngữ “thực hữu-phổ biến” chuyển tải trong các thí dụ Mathurānātha đã cho và các diễn dịch thông thường như của Goekoop hay Ingalls. Một sự phô diễn như thế không thể thiếu nếu chúng ta có ý đánh giá đầy đủ các ẩn nghĩa của nó không chỉ đối với năm định nghĩa về sự không-tách-ly mà còn cả định nghĩa về sự nối kết bất khả phân. Điều này không chỉ vì chúng ta có thể đồng nhất không-tách-ly với nối kết bất khả phân, và vì thế, tất cả các định nghĩa về chúng đều tương đương, như đã thấy; mà còn vì việc Gangeśa đã sử dụng cùng một lập luận do ông đề ra để phê phán các định nghĩa về không-tách-ly cũng như định nghĩa về nối kết bất khả phân, nhằm khẳng định một định nghĩa như thế thì “không áp dụng được cho các trường hợp thực hữu-phổ biến.”[46]

Phần lớn các ẩn ý của nhận xét có phê phán này không nằm trong những gì nó phát biểu mà là trong những gì nó không nói ra, bởi vì, phát biểu “nó không áp dụng cho các trường hợp xác định-phổ biến” không những chỉ cho việc thiếu các thí dụ không tương tợ, mà còn cho sự thiếu các thí dụ không tương tợ trong trường hợp của một luận lý chủng loại. Như vậy, dù có thể có tình huống mà Gangeśa thực sự không có những hàm ý như chúng ta đã diễn dịch qua phát biểu đó, thì vẫn không nên có bất kỳ nghi ngờ nào về sự hỗ trợ có thể có mà một diễn dịch như thế mang lại cho chúng ta trong việc tìm kiếm một sự hiểu biết đúng và hợp lý về thuyết lan truyền của Thế Thân cũng như định nghĩa của nó bằng sự nối kết bất khả phân; bởi vì ít ra nó cũng được sử dụng như một loại kích thích nhằm thúc đẩy chúng ta tìm hiểu giá trị và tính liên quán của thuyết đó đồng thời chỉ ra phương hướng mà hướng tìm hiểu này sẽ dẫn đến.

Tình huống đó, mặc dù chưa hẳn đã xảy ra, nhưng phải được cảnh báo, vì chúng ta biết rằng các diễn giải có thể chọn lựa khác, giống như những diễn dịch của Goekoop, không phải là vô chứng cứ về phần chúng. Chẳng hạn, có lúc chúng ta đã nhắc đến nhóm từ “việc thiếu các thí dụ không tương tợ” ở đoạn trên. Nhóm từ này có thể dễ dàng nhận ra như một lối dịch tự do của định nghĩa chính xác về thực hữu-phổ biến là gì, định nghĩa mà một số nhà luận lý học Navyanaiyāyika đã trình bày từ thời của Uddyotakara. Thí dụ, trong tác phẩm Siddhāntamuktāvalī của mình, Viśvannātha Pañcānana đã đưa ra định nghĩa: “Thực hữu-phổ biến là cái không có các trường hợp không tương tợ”; và thêm rằng .”..như trong mệnh đề kiểu‘cái bình có thể được đặt tên vì nó có thể được biết đến’, bởi vì ở đó, do mọi vật đều có thể được đặt tên, cho nên không có trường hợp không tương tợ.”[47] ❑

(còn tiếp)

Việt dịch: Đạo Sinh

[1] Xem Staal, Negation and the Law of Contradiction in Indian Thought, BSOAS XXV (1962): 52-71; Pandey, The Problem of Meaning in Indian Philosophy, Delhi: Motilal Banarsidass, 1963: 13-16.

[2] Staal, “Contraposition in Indian Logic”, trong Logic, Methodology and Philosophy of Science: Proceedings of the 1960 International Congress, ed. Ernest Nagel et al., Stanford: Standford University Press, 1962: 634.

[3] Nyāyasūtra i. 1. 36-38.

[4] Abhidharmakośa II. 46a: yadā tarhi sadṛṣṭa utpadyate/ na te nirviśeṣā bhavanti/ katham idam jñayate/ kṣiptākṣptabalidurbalakṣiptasya vajrādeśa cirāsutarapātakālabhedāt tan mahābhūtānām parināmaviśeṣasiddheḥ/ nātibahuviśeṣabhinās tu saṃskārāḥ saty apy anyathātve sadṛṣṭā eva dṛśyante/ antimasya tarhi śabdārciḥkṣaṇasya parinirvāṇakāle ca ṣaḍāyatanasyottarakṣaṇābhāvāt sthiyanyathātvaṃ nāstīty avyāpinī lakṣaṇavyavasthā prāpnoti/
[5] Barliṅgay, A Modern Introduction to Indian Logic, Delhi: National Publishing House, 1965: 109. Uno cũng đã đưa ra một phát biểu tương tợ, dù ít chính xác hơn. Xem Uno, “The Concept of Vyāpti in the Nyāya School”, Acta Asiatica III (1962): 16-29.

[6] Staal, The Theory of Definition in Indian Logic, JAOS LXXXI (1961): 122-126; Annambhatta, “Tarkasamgraha”, trong Le Compendium des Topiques d’Annambhatta, ed. & transl. Foucher, Paris: Adrien-Maisonneuve, 1949: 11-14.

[7] Frauwwallner, Vasubandhu’s Vādavidhih, WZKSOA I (1957): 104-146: Fragment 16a.

[8] Vādavidhi, Fragment 10.

[9] Vādavidhi, Fragment 4.

[10] Dharmakīrti, The Pramāṇavārttikam of Dharmakīrti, ed. Raniero Gnoli, Roma: Instituto Italiano per il Medico ed Estremo Oriente, 1960: 17.

[11] Dharmottara, Nyāyabinduṭīkā, ed. Serbatskoi, Petrograd: Rossi ’skoi Akademi’ Nauk’, 1918: 25.

[12] Gangeśa, Tattvacintāmani, part II: Anumānakhanda by Gangeśopādhyāya with Mathurānātha’s Commentary, Calcutta: Bibliotheca Indica, 1892: 85: nāpy avinābhāvaḥ.

[13] Gangeśa, op. cit., p 88: sādhyābhāvavad-vṛtti-bhina. Xem thêm bình giải của Raghunātha, Tattvacintāmani-dīdhiti-prakāsa by Bhavananda Siddantavagisa with Tattva-cintāmani and Dīdhiti, ed. Mahāmohopādhyāya Suruccharana Tarkadarshanatirtha, Calcutta: Bibliotheca Indica, 1991: 299.

[14] Gangeśa, op. cit., p 30: sādhyābhāvavad-avṛttitvam.

[15] Vādavidhi, Fragment 16a.

[16] Vādavidhi, Fragment 16b.

[17] Vādavidhi, Fragment 7.

[18] Vādavidhi, Fragment 4.

[19] Xem Indices Verborum, op. cit.: 18a-b & 61a.

[20] Uddyotakara, Nyāyavārttika: 56; xem thêm chú thích 8 ở trên.

[21] Thật ra, có thể chính Thế Thân cũng đã dùng từ nāntarīyaka, vì theo Durvekamiśra, Hetubinduṭīkāloka, ed. Sukhlaji Sanghavi, Baroda: Oriental Institute, 1949, p. 317, thì câu nói “nāntarīyakārthadarśanaṃ tadvido ’numānam” là của Thế Thân.

[22] Frauwallner, op. cit., fragment 4; Uddyotakara, op. cit.: 55 & 131.

[23] Điều này không có nghĩa từ avinābhāva không phổ biến. Thật ra, nếu đọc bảng từ vựng của Hetubindu và Hetubinduṭīkā được lập ra trong ấn bản của Sanghavi, ta sẽ thấy rõ rằng avinābhāva vẫn rất phổ biến nếu so với avyabhicāra: tỷ lệ là 4/1 trong Hetubindu mặc dù Pháp Xứng thích dùng từ sau hơn trong Nyāyabindu và Pramāṇavārttikā của ông. Trong Hetubinduṭīkā còn tìm thấy tỷ lệ cao hơn: 16/1. Tính phổ biến của từ avinābhāva có lẽ do cách dùng thường xuyên của các nhà phê bình như Uddyottara, Vacaśpatimiśra, v.v. Chẳng hạn, xem Vacaśpatimiśra, Nyāyavārttikatātparyaṭīkā, ed. Rajeshwara Sastri Dravid, Benares: Kashi, Sanskrit Series, 1925:158-159, trong đó ông dẫn lời của Pháp Xứng: kāryakāraṇabhāvād vā svabhāvād vā niyāmakāt/ avinābhāvaniyamo ’darśanān na darśanāt//

[24] Gangeśa, Tattvacintāmani: 27-31: nanv anumiti hetu vyāpti jñane kā vyāptiḥ na tāvad avyabhicaritatvaṃ tad dhi na sādhyābhāvavad avṛttitvaṃ sādhyavadbhinna sādhyābhāvavad avṛttitvaṃ sādhyavat pratiyogikānyo’nyābhāvāsāmānādhikaraṇyaṃ sakala sādhyābhāvavan niṣṭthābhāva pratiyogitvaṃ sādhyavad anyāvṛttitvaṃ va kevalānvayiny abhāvād iti.
[25] Bochenski, Formale Logik, Freiburg/München: Verlag Karl Alber, 1962: 511-512.

Bochenski có năm định nghĩa được thuyết minh như sau:

1. gCs º g(-V/O/A)s

2. gCs º g(-V/O/VO/D)s

3. gCs º g(O/D/G/O)s

4. gCs º g(G/A/I/O/A)s

5. gCs º g(-V/D/O)s

trong đó gCs chỉ cho quan hệ lan truyền giữa h và s mà ông gọi là g và s, và V, A, D, I, G và O chỉ cho quan hệ của sự xảy ra, vắng mặt, khác nhau, tồn hữu, đối hữu,và nơi chốn, theo thứ tự liệt kê. Staal phê phán thuyết minh trên và đã thuyết minh lại qua thuyết định lượng và các khả biến hạn chế theo dạng “F(x)”.

1. V(h,s) =d -A {h,αyB[y, αx(x ≠ s)]}

2. V(h,s) =d -A {(h,αuB[u,αzA(z,αy(y ≠ αxB(x,s)))])}

3. V(h,s) =d B(x,h) ≠ αy[y ≠ αxB(x,s)}

4. V(h,s) =d (αyB) {-A[h,αyB(y,αx(x ≠ s))]}

5. V(h,s) = -A {h,αy[y ≠ αxB(x,s)]}

Goekoop hình như bác bỏ việc sử dụng các khả biến hạn chế và định lượng hạn chế và, thay vì thế, trở lại cách dùng hàm số diễn toán lần nhất của Hilbert-Ackermann “mà không chút thay đổi”:
1-2. {(y) {Ay ® -(Ex)[(z)(Bz ® -Szx) & Ryx)]}

3&5. (y)(Ay ® -(Ex) {(w) [(Ez)(Bz & Szw) ® (x ≠ w)] & Ryx}

4. (y) {Ay ® (x) [(z) (Bz ® -Szx) ® -Ryx]}

[26] Berge, Journal of Symbolic Logic XXXV (1970): 572-573.

[27] Russell, “Mathematical Logic as Based on the Theory of Types”, American Journal of Mathematics XXX (1908): 222-262.

[28] Sarvadarśanasaṃgraha of Sāyana-Mādhava, ed. Vasudev Shastri Abhyankar, Poona: The Bhandarkar Oriental Research Institute, 1924: 27.

[29] Dignāga, Pramāṇasamuccaya I, p.14a4.

[30] Gangeśa, Tattvacintāmani: pp. 36,39.

[31] Gangeśa, Tattvacintāmani: p. 30.

[32] Gangeśa, Tattvacintāmani: p. 42.

[33] Gangeśa, Tattvacintāmani: pp. 43,47.

[34] Goekoop, The Logic of Invariable Concomittance in the Tattvacintāmani, Dordrecht, 1967: 32-34 & 63-64.

[35] Gangeśa, Tattvacintāmani: p. 46.

[36] Gangeśa, Tattvacintāmani: pp. 47-48: sarvāny va lakṣaṇāni kevalānvayy avyāptyādūsayati kevalānvayy abhāvād iti/ pañcānām eva lakṣaṇānām idam vācyam jñeyatvād ity-āadi-vyāpya-vṛtti-kevalānvayi-sādhyake/ (dvitīyādi-lakṣaṇa-catuṣṭasya tu) kapi-samyogābhāvavām sattvād ity-ādy-avyāpya-vṛtti-sādhyke ’pi cābhāvād ity arthaḥ/ sādhyatāvacchedaka-sambandhā-vacchinnasādhyatāvacchedakāvacchinnapratiyogitāka-sādhyābhāvasya/ sādhyatāvacchedaka - sambandhena sādhyavattvāvacchinna-pratiyogitākānyonyābhāvasya cāprasiddhatvāt/ kapi-samyo gā-bhāvavān sattvād ity-adau niravacchinna-sādhyābhāvādhikaraṇatvasyāprasiddhatvāc ceti bhāvaḥ//”

[37] Goekoop, op. cit.: 63-64. Thí dụ “Nó có thể được đặt tên vì có thể được biết đến” xuất hiện ở các trang 62-63, dù Goekoop đã không đề cập đến các tính chất đặc biệt của quan niệm Navya-naiyāyika về tính khả danh và tính khả tri. Ingalls, op. cit., các trang 61-62 đã nhắc đến đặc điểm này và vì thế cảnh báo độc giả về ý nghĩa có thể có trong trường hợp đặc biệt này, dù ông hình như đã nói về tính khả danh và tính khả tri như hai thực thể khác nhau – một điều không chính xác. Xem thêm chú thích 41.

[38] Potter, Astitvam Jñyatvam Abhidheyatvam, WZKSOA XII-XIII (1968)/1969): 275-280; Presupposition in Indian Philosophy, Englewood Cliff: J. Wiley, 1965.

[39] Russell, The Principles of Mathematics, London: Cambridge University Press, 1903: 101-107.
[40] Quine, Methods of Logic: 225-231; Rosser, Logic for Mathematicians, New York: McGraw-Hill Book Company, Inc., 1953: 197-213.

[41] Ingalls, op. cit.: 61. Đó là một phát biểu gây hiểu lầm, vì vācyatva và jñeyatva có thể bị xem đang biểu thị hai thực thể, trong khi theo Navya-naiyāyika, hay ít ra theo Udayana, chúng biểu thị một và chỉ một thực thể.

[42] Udayana, Praśastapādabhāsyam with the Commentary Kiranāvalī of Udayanācārya, ed. Jitendrra S. Jetly, Baroda: Oriental Institute, 1971: 22-23.

[43] Kitagawa, Indo koten ronrigaku no kenkyu, Tokyo, 1965: 3-9; Potter, Astitvam Jñeyatvam Abhidheyatvam, WZKSOA XII-XIII (1968): 279-280; Matilal, Epistemology, Logic and Grammar in Indian Philosophical Analysis, The Hague: Mouton, 1971: 65-70.

[44] Baliṅgay, A Modern Introduction to Indian Logic, Delhi: National Publishing House, 1965: 84-85; Matilal, The Navya-nyāya Doctrine of Negation, Cambridge: Havard University Press, 1968: 41-42, trong đó jāti được định nghĩa là

($x) ($y) ($z) [Rxyz & (x ≠ y) & (y ≠ z) & (x ≠ z)]

[45] Rosser, Logic for Mathematicians, New York: McGraw-Hill, 1953: 200-207.

[46] Gangeśa, Tattvacintāmani: p. 85: nāpy avinābhāvaḥ kevalānvayiny abhāvāt/.

[47] Viśvanātha, Nyāyāsiddhāntamuktāvalī, ed. Harirāma Éukla Sāstrī, Varaṇasi: The Chowkhamba Sanskrit Series Office, 1972: 501.

(Xem tiếp Chương 4b)

Chương 4(tt)

Một Số Kết Quả Luận Lý

Annambhatta, người cùng thời với ông, cũng đề nghị một định nghĩa theo hướng đó, nói rằng “Thực hữu-phổ biến là cái có cái lan truyền luôn luôn xác thực, như trong suy luận ‘cái bình có thể được đặt tên vì nó có thể được biết đến, giống như tấm vải’, bởi vì trong trường hợp này không có sự lan truyền phủ định của tính khả danh và tính khả tri, do mọi vật đều vừa có thể được đặt tên vừa có thể được biết đến.”[1] Đối với các định nghĩa này, Staal đề nghị thuyết minh như sau:[2]

(13) -($x) -A(s,x) hoặc ("x) A(s,x)

Nay ta biết rằng trong số các lý luận sai khác nhau Thế Thân có liệt kê trường hợp một suy luận căn cứ trên quan hệ ngược lại, trường hợp chúng ta đã bàn đến trước đây. Quan hệ này cho phép đối thủ của Thế Thân chuyển luận đề đúng của ông “bất kỳ cái gì sinh khởi do một cố gắng đều không trường cửu” thành một luận đề sai “bất kỳ cái gì không trường cửu đều khởi do một cố gắng.” Việc ông nhận ra sự áp dụng sai quan hệ đó và, từ đó, nhận ra nguồn gốc của ngộ nhận này chứng tỏ một cách rõ ràng rằng chắc chắn ông phải biết đến luật đối hoán mà sau này Kumārila Bhatta đã diễn tả một cách đơn giản nhưng rất rõ ràng như sau: “Nếu duy trì quan hệ của cái lan truyền và cái được lan truyền giữa hai thực thể, thì tất nhiên cũng duy trì được quan hệ ngược lại giữa các phủ định của chúng.”[3] Với luật này, ta có thể chuyển công thức (2) thành một công thức tương đương:

(14) ("x) [A(h,x) ® A(s,x)] ↔ ("x) [-A(s,x) ® -A(h,x)]

nói rằng Per(A,B) nếu Per(-B,-A), và ngược lại. Thế nhưng, rõ ràng công thức (14) và vì thế công thức (2) không đứng vững nếu công thức (13) có giá trị, bởi vì chi bên phải của (14) trong trường hợp đó không thể định nghĩa được. Như vậy, nếu thuyết lan truyền của Thế Thân thực sự dựa vào luật đối hoán, thì phê phán của Gangeśa, được diễn giải trong phạm vi định nghĩa của Navyanaiyāyika về thực hữu-phổ biến như Ingalls và Goekoop đã làm, hoàn toàn có giá trị. Thật vậy, khái niệm thực hữu-phổ biến chỉ có thể được tri nhận song song với luật đó. Tuy nhiên, nếu thuyết của Thế Thân không dựa trên luật đó thì chúng ta sẽ có một tình huống hoàn toàn khác hẳn. Vì thế, bắt buộc phải tìm xem thuyết của ông có thật sự căn cứ vào luật đó hay không.

Như Staal đã lưu ý, việc phân loại suy luận thành ba nhóm, trong đó suy luận thực hữu-phổ biến bắt nguồn từ thuyết được gọi là “ba đặc tính của h”, có thể thuyết minh theo các công thức sau nếu sử dụng giải thích của Pháp Xứng:

(i) “h chỉ xảy ra trong cái được suy luận”

(15) ("x) [h(x) ® A(x,p)]

trong đó p thay cho cái được suy luận.

(ii) “h chỉ xảy ra trong các trường hợp tương tợ”

(16) ("x) {h((x) ® [Si(x,p) ٨ s(x)]

(iii) “h không xảy ra trong các trường hợp không tương tợ.”[4]

17) ("x) – [h(x) ® s(x)]

Ba đặc tính này được Thế Thân công bố lần đầu tiên trong Như Thực Luận của ông.[5] Có người cho rằng chính Pháp Xứng đã cho chúng một dạng được định lượng bằng cách đưa vào phụ từ eva, chỉ.[6] Tuy nhiên, một đề nghị như thế hình như thiếu cơ sở, nhất là đối với tình trạng manh mún của hiểu biết chúng ta về các tác phẩm luận lý của Thế Thân, những hiểu biết chủ yếu xuất phát từ các bản dịch Hán văn và Tạng văn. Như vậy, ngày nay chúng ta biết đến công bố trên trong Như Thực Luận là nhờ bản dịch Hán văn, một điều không có gì bảo đảm cho cách dùng chữ chính xác của bản Phạn, nhất là khi nó được dịch bởi Chân Đế, một dịch giả đôi khi đã không bám sát nguyên bản nhiều lắm, như ta đã thấy trong bản dịch Câu Xá Luận của ông. Vì thế, nếu không quá chú trọng đến vấn đề này ở đây thì ta có thể cho rằng thuyết về ba đặc tính của h ở dạng định lượng của nó đã được Thế Thân giảng giải, và rằng các công thức (15), (16) và (17) mô tả thuyết này bằng ngôn ngữ ký hiệu.

Vì lẽ đó, cần phải lưu ý thêm rằng không phải “Trong các bản về sau chỗ của Anumeya đã thay bằng pakṣa và chỗ của asapakṣa bằng vipakṣa”, như Staal đã yêu cầu, bởi vì các chữ này, tức pakṣa và vipakṣa, đã xuất hiện trong các tác phẩm của Thế Thân rồi, và vì chúng ta biết rằng Pháp Xứng, theo chân Trần Na, thường sử dụng cách dùng từ của Trần Na thay vì của Thế Thân.[7] Việc ông sử dụng nhiều lần từ avyabhicāra để thay cho avinābhāva ở trong Nyāyabindu cũng như trong Pramāṇavārttika, là trường hợp điển hình nhất.[8]

Với ba đặc tính này của h, người ta tự hỏi có thể có sự loại suy của một suy luận tổng quát theo dạng được diễn đạt trong công thức (2) không. Theo Staal, câu trả lời cho câu hỏi này là chỉ có thể trong trường hợp luật đối hoán được giả thiết. Thế nhưng, như Berg đã chỉ ra một cách chính xác,[9] yêu cầu phải có luật này thực sự sinh khởi từ hệ thống chính thức của Staal hơn là từ ba đặc tính do Thế Thân đề ra. Trong hệ thống của Staal, các đặc tính (ii) và (iii) được chính thức hóa như sau:

(a) ("y) {A(h,y) ® {y = αx [(x ≠ p) ٨ A(s,x)]}

(b) [αx –A(s,x)] -A[h,αx –A(s,x)]

Nay, nếu ta loại suy (2) từ (b), thì luật đối hoán phải được giả thiết, vì (b) chỉ cho câu đối hoán của (2) theo luật:

 [αxF(x)] G[µxF(x)] ↔ ("x) [F(x) ® G(x)]

được đề ra trong hệ thống của Staal, và một loại suy như thế sẽ cho chúng ta chi bên phải của công thức (14) tương đương:

("x) [-A(s,x) ® -A(h,x)]

Tuy nhiên, nếu ta thuyết minh ba đặc tính này theo hệ của Berg hay của chúng ta, như đã thấy trước đây, thì không cần đến luật đối hoán như thế, vì ta có thể loại suy (2) từ (16) và (17) rất dễ dàng do (16) thì tương tợ với định nghĩa (7), và (17) tương tợ với (11). Như vậy, người ta sẽ có khuynh hướng đồng ý với đánh giá của Berg rằng “cố gắng của Staal nhằm thiết lập một hình ảnh đồng hình dị chủng về ‘ngôn ngữ tự nhiên được phân tích’ trong hệ thống chính thức của riêng ông thật không thích hợp về cả luận lý lẫn sư phạm.”[10]

Điều khá thú vị là thuyết minh của Staal, mặc dù “không thích hợp về cả luận lý lẫn sư phạm”, đã ném một ánh sáng kỳ lạ lên lời phê phán của Gangeśa đối với năm định nghĩa về sự không-tách-ly và định nghĩa về nối kết bất khả phân. Hãy nhớ là Goekoop đã nhận ra sự tương đương với nhau về luận lý của sáu định nghĩa này cũng như sự tương đương giữa chúng với định nghĩa có giá trị về lan truyền, khi ông thuyết minh chúng dựa vào hàm số diễn toán lần thứ nhất, trong hệ thống của ông như sau:

(g1) (y) {Ay ® -(Ex) {(z) (Bz ® -SZX) ٨ Ryx]}

(g2) (y) {Ay ® -(Ex) [(w) (Ez) (Bz & Szw) ® (x≠w) & Ryx]}

(g3) (y) {Ay ® (x) [(z) (Bz -Szx) ® -Ryx]}

trong đó (g1) là biểu thức của các định nghĩa số 1 và 2, và tôi phải thêm rằng, kể cả định nghĩa về nối kết bất khả phân, mà chính Goekoop đã thừa nhận là một dạng khác của định nghĩa số 1; (g2) là biểu thức của các định nghĩa số 3 và 5; và (g3) là biểu thức của định nghĩa số 4. Kế đó ông so sánh chúng với định nghĩa có giá trị về lan truyền:

(g4) (x) [(Ey) (Ay & Ryx) ® (Ey) (By & Syx)]

và nhận ra rằng chúng thực sự tương đương với (g4) và vì thế, “theo quan điểm thuần luận lý”, chúng chính xác. Tuy nhiên, ông tiếp tục nhận xét rằng “trong trường hợp của các thực hữu-phổ biến thì điều kiện:

(g5) (Ex) (y) (By ® -Syx)

không thành. Kết quả là (g4) vốn là biểu thức của định nghĩa lan truyền được chính ông lập thành và vì thế được xem như có giá trị đã không đáp ứng được (g5); vì thế tự thân định nghĩa này không đáp ứng khái niệm lan truyền.[11] Những sự không liên quán này có lẽ sẽ không lôi cuốn được chú ý của chúng ta nếu không có sự kiện điều kiện (g5) là một biểu thức khác của công thức (13). Và điều kiện được (13) đặt ra thì có thể áp dụng cho các định nghĩa về lan truyền và cho suy luận chỉ khi luật đối hoán được diễn đạt bởi (14) được giả thiết, như thuyết minh của Staal đã chỉ rõ. Thế nhưng, Goekoop đã đề cập đến luật đó không chỉ một lần, mặc dù ông tiếp tục cho rằng cả năm định nghĩa và định nghĩa về nối kết bất khả phân đều đúng do chúng tương đương với định nghĩa lan truyền của ông, định nghĩa mà chúng ta giả thiết là phải có giá trị ít nhất theo quan điểm ông. Nếu không, người ta sẽ tự hỏi tại sao rốt cùng ông phải mất công thiết lập nó. Một tình huống khó hiểu như thế có lẽ xảy ra do ông nghĩ mình chỉ là người truyền đạt tư tưởng của Gangeśa.

Thật vậy, Gangeśa đã thiết lập phê phán của mình về các trường hợp thực hữu-phổ biến mà không hề đề cập đến luật đối hoán trong phạm vi khảo sát của ông về khái niệm lan truyền. Nếu chúng ta tạm thời loại trừ khả năng những phê phán của ông vẫn dựa trên khái niệm chủng loại, thì rồi chúng ta cũng buộc phải nhìn nhận rằng ông đã phải dựa vào luật đối hoán. Theo thuyết minh nói trên của Staal, khả năng này rất có thể xảy ra, bởi vì mặc dù Gangeśa không nhắc đến luật đó trong khảo sát của ông về khái niệm lan truyền, nhưng ông đã sống vào thời khoảng mà việc chuyển thể ba đặc tính của h do Thế Thân tìm ra thành ba kiểu suy luận đã hoàn chỉnh và được lập thành. Chính ông là người đã mở ra thời kỳ của Navya-nyāya và góp phần vào việc phổ biến và phát triển phân loại đó.

a có thể nói rằng phân loại mới này, dù bắt nguồn từ ba đặc tính của h, hầu như không có được nền tảng chung, một điều sẽ được nhận ra ngay, với luận lý đặt nền tảng trên thuyết ba tánh của h. Nó chia suy luận thành ba loại phù hợp với s là phổ biến, trống rỗng hoặc không phải cả hai. Trong trường hợp s là phổ biến, nó được gọi là “thực hữu-phổ biến.” Nếu nó trống rỗng, nó được gọi là “phủ định-phổ biến.” Nếu không phải hai trường hợp đó, nó được gọi là “thực hữu-phủ định.” Gangeśa, theo chân Uddyotakara, đã cho chúng ta phân loại này cùng với định nghĩa của nó.[12] Cần lưu ý rằng cả ba trường hợp này đều được định nghĩa dựa vào s mà không phải h, bởi vì đây là điểm khác biệt rất quan trọng, một điều đã bị hầu hết các tác giả sau Gangeśa bỏ qua, kể cả các tác giả thời nay.

Chẳng hạn, Viśvanātha, khi bình giải câu “Suy luận có ba loại” trong tác phẩm Siddhānatamuktāvalī của ông, đã nói rằng:

Suy luận có ba loại tùy theo nó là thực hữu-phổ biến, phủ định-phổ biến hay vừa thực hữu vừa phủ định. Trong số này, cái không có các trường hợp không tương tợ là thực hữu-phổ biến, như ‘Một cái bình thì có thể được đặt tên và được biết’, bởi vì trong đó không có các trường hợp không tương tợ bởi lẽ mọi vật đều có thể được đặt tên. Cái không có trường hợp tương tợ là phủ định-phổ biến, như “Đất thì khác với các vật khác vì nó có mùi’, bởi vì trong đó do không biết rõ sự khác biệt với mười ba thực thể như nước, v.v., cho nên đã thiếu mất một trường hợp tương tợ, hoặc những gì rõ ràng có cái được suy luận. Cái có cả trường hợp tương tợ và không tương tợ là thực hữu-phủ định, như ‘Nó có lửa vì nó có khói’, bởi vì nó có các trường hợp tương tợ, như nhà bếp, và các trường hợp không tương tợ, như cái hồ.[13]

Như vậy, qua giải thích ba kiểu suy luận theo cách trên, Viśvanātha đã đồng nhất thuyết về ba kiểu suy luận với thuyết ba đặc tính của h; và làm thế là không chính xác. Lý do là vì trong khi Gangeśa định nghĩa sự phân loại của ông dựa vào s thì Thế Thân và, như sẽ thấy, Trần Na lại căn cứ sự phân loại của họ vào h. Sự nhầm lẫn này đã lan rộng vào thời của Viśvanātha. Annambhatta, không mắc phải tình trạng tối nghĩa của Viśvanātha, đã minh nhiên đề cập đến ba loại của h và gọi chúng là thực hữu-phủ định, thực hữu-phổ biến và phủ định-phổ biến. Ông nói:
h có ba loại: thực hữu-phủ định, thực hữu-phổ biến và phủ định-phổ biến. Thực hữu-phủ định là cái có cả lan truyền xác định lẫn phủ định, như trong trường hợp có cái gì đó có khói và lửa là vật được suy luận, thì phát biểu “nơi nào có khói, nơi đó có lửa, như trong nhà bếp’ là một lan truyền xác định; và phát biểu ‘nơi nào không có lửa thì cũng không có khói, như trong hồ’ là một lan truyền phủ định. Thực hữu-phổ biến là cái khiến cho cái lan truyền luôn luôn xác định, như “Cái bình thì có thể được đặt tên và được biết, như tấm vải’, bởi vì trong trường hợp này không có lan truyền phủ định của tính khả tri và khả danh, bởi lẽ mọi vật đều có thể được biết và đặt tên. Phủ định-phổ biến là cái khiến cho cái lan truyền luôn luôn phủ định, như “Đất thì khác với các vật khác, không có mùi, và cái này thì không phải như vậy, cho nên cái kia không phải như vậy’, bởi vì trong trường hợp này không có thí dụ xác định cho phát biểu ‘bất cứ cái gì có mùi đều khác với các vật khác’, bởi lẽ pakṣatva đó luôn luôn là đất.[14]

Như vậy, Annambhatta đã pha trộn thuyết ba kiểu suy luận với thuyết ba đặc tính của h để gây ra nhầm lẫn là ‘h có ba loại: thực hữu-phủ định, thực hữu-phổ biến và phủ định-phổ biến.”

Nhầm lẫn này vẫn lan tràn cho đến ngày nay. Chẳng hạn như Matilal, dù ông đã phân biệt thành công quan niệm của Trần Na về “thực hữu-phổ biến” với quan niệm của Uddyotakara cũng như trình bày chính xác các định nghĩa của Gangeśa về ba kiểu suy luận, nhưng lại không thể làm rõ tại sao hai người này lại đưa ra một thuyết mới như thế và những hệ quả gì mà thuyết này đã mang lại đối với quan niệm của Trần Na.[15] Thay vì thế, ông lại tiếp tục bàn về quan điểm của Uddyotakara và Gangeśa, chỉ ra rằng những người này đã sử dụng ngôn ngữ và các thí dụ của Trần Na, và vì thế đã tạo một ấn tượng sai lạc là không có những khác nhau cơ bản nào cả giữa luận lý của Trần Na và họ. Ta còn có thể nói rằng Matilal đã không nhận ra ý nghĩa phát biểu của Gangeśa về trường hợp thực hữu-phổ biến mà, trong những trường hợp này, nó là “đặc tính luôn luôn hiện hữu”, điều mà chính Matilal đã nói đến. Trong trường hợp của Staal và vì thế cũng của Goekoop, nhầm lẫn này còn lớn hơn và không phải ít hứng thú. Staal mở đầu bằng việc chứng minh rằng với hệ thống chính thức của ông ta có thể loại suy công thức (2) từ (16) và (17) chỉ khi luật đối hoán được giả thiết. Rồi ông phê phán Stcherbatsky và những người khác đã không biết được rằng (16) và (17) là tương đương và “rằng sự tương đương này tạo thành mối quan hệ luận lý, tức sự đối hoán.”[16]

Và vì thế mối quan hệ luận lý này được quan niệm là nền tảng của luận lý Pháp Xứng, nếu không phải là của Trần Na và Thế Thân. Cuối cùng, ông tiếp tục bày tỏ rằng mối quan hệ đó cũng là cơ sở của luận lý Gangeśa đã thống ngự phần còn lại của luận lý học Ấn độ sau Trần Na và Pháp Xứng. Với một trình bày như thế, Staal đã không phân biệt được, giống như Matilal, các lập luận giữa Trần Na và Uddyotakara, tức nên xem h hay s là phổ biến, mặc dù ông có tình cờ nhắc đến tên của người sau. Như vậy, đối với Staal, kể từ khi Thế Thân tìm ra ba đặc tính của h cho đến thời của Viśvanātha, Annambhatta và những người khác, chẳng có một chút khác biệt nào giữa các quan điểm liên quan đến ba đặc tính đó, cho dù có lập luận của Uddyotakara và các định nghĩa mới của Gangeśa. Vì vậy, đó là một nhầm lẫn hoàn toàn.

Như đã nói trên, nhầm lẫn của các nhà nghiên cứu ngày nay bắt nguồn từ nhầm lẫn của các tác giả đi trước, trong số đó chúng ta đã nhắc đến Viśvanātha và Annambhatta như những người đại diện. Thật vậy, sau khi dẫn hai tác giả này và chính thức hóa các phát biểu của họ về ba kiểu suy luận, Staal nhận xét rằng “trong nhiều bản văn khác nhau này sự đối hoán được mặc nhiên thừa nhận đối với sự lan truyền và suy luận trong các điều kiện sau:

V(h,s) ↔ V(negation of s, negation of h)”

Vì thế, khi Visvanātha định nghĩa một cách mơ hồ thực hữu-phổ biến là “cái không có những trường hợp không tương tợ”, ông đã ngầm giúp Staal nối kết, và sau đó là đồng nhất định nghĩa đó với định nghĩa về đặt tính thứ hai được diễn ta qua công thức (16), và từ đó, đã xem sự tồn tại của luật đối hoán dưới dạng tiêu chuẩn của suy luận Ấn độ như đã được viết trong công thức (2). Nay ta đã chỉ rõ rằng thuyết ba đặc tính của h hoàn toàn khác với sự phân loại suy luận thành ba kiểu, bởi vì trong khi thuyết đầu căn cứ vào h thì thuyết sau lại đặt nền tảng ở s. Sự khác nhau này thật cơ bản bởi lẽ nó sẽ cho ta hai loại luận lý hoàn toàn khác nhau, một căn cứ trên thuyết lan truyền, và một căn cứ trên luật đối hoán. Và Berg phải là người nhận lãnh vinh dự đã nhận ra đầu tiên sự khác nhau cơ bản này.

Trong bài phê bình của mình về khảo luận “Đối Hoán Trong Luận Lý Ấn Độ” của Staal,[17] Berge đã chỉ ra rằng “sự nhận ra luật này (tức luật đối hoán) rõ ràng tùy thuộc vào việc chính thức hóa của riêng tác giả căn cứ vào những cái khả biến có hạn chế” và “theo một cách diễn dịch khác, trực tiếp hơn, . . ., thì vấn đề đối hoán trong trường hợp đặc thù này đã biến mất.” Sau đó ông tiếp tục nhận xét biện luận của Staal về luật đó. Trong nhận xét này, ông nối kết luật đó với phân loại suy luận thành ba kiểu của Navya-naiyāyika “tùy theo sādhya có phải là (a) phổ biến, (b) trống rỗng, hay (c) không phải cả hai.” Ông còn thêm nhận xét rõ ràng rằng “các nhà luận lý Navya-nyāya đã áp đặt sự hạn chế lên luật đối hoán khi cho rằng các trường hợp (a) và (b) phải bị loại trừ, bởi vì nếu không thì các phần đối hợp của hai phụ thức chính của luật này sẽ không thể là các điểm nhận thức có giá trị.” Nhận xét này, dù rất hiển nhiên, nhưng thật thú vị ở chỗ nó cho chúng ta một cái nhìn khá kín đáo về những gì thực sự tạo thành nền tảng cho phân loại các suy luận của Navya-naiyāyika.

Thật vậy, nó mở đường cho việc nhận ra rằng Navya-naiyāyika, kể cả Gangeśa, thiết lập luận lý của họ phần lớn và chủ yếu dựa vào luật đối hoán. Và chính từ quan điểm của luật này mà họ nhìn và phán xét các hệ thống luận lý khác. Sau khi nói về điều này, cần phải nói thêm rằng điều đó không có nghĩa là chúng tôi gán cho Berg khẳng định rằng luận lý của Gangeśa chủ yếu dựa vào luật đối hoán. Khẳng định đó là của chúng tôi. Ý nghĩa của khẳng định này nằm ở sự kiện nó không chỉ cho chúng ta thấy những gì làm nền tảng cho phê phán của Gangeśa về các định nghĩa không-tách-ly và nối kết bất khả phân, mà nó còn ném một tia sáng lên vấn đề có phải Trần Na và luận lý của trường phái ông đã đặt nền tảng trên cùng luật đối hoán này không, như Staal đã chỉ ra. Thật vậy, điểm thứ hai là đặc điểm thú vị nhất của sai lầm và nhầm lẫn to lớn của Staal.

Việc các nhà luận lý hậu-Gangeśa xem luận lý của họ được thiết lập trên luật đối hoán thì quá hiển nhiên khi đọc các tác phẩm của họ. Thí dụ như trường hợp của Annambhatta đã nói ở trên. Ông định nghĩa loại suy luận thực hữu-phủ định như sau: “Thực hữu-phủ định là cái có sự lan truyền vừa xác định vừa phủ định, như trong trường hợp có cái gì đó có lửa và khói là vật được suy luận thì phát biểu ‘nơi nào có lửa, nơi đó có khói, như trong nhà bếp’ là lan truyền xác định, và phát biểu ‘nơi nào không có lửa, nơi đó không có khói, như trong hồ’ là lan truyền phủ định.” Định nghĩa này chắc chắn là một phát biểu thuộc luật đối hoán, như Staal nhìn nhận và thuyết minh thành công thức tương đương (14), sau khi đã dẫn quan điểm của Kumārila và bình giải của Keśavamiśra về nó.[18] Như vậy, không còn nghi ngờ gì nữa về vị trí của luật này trong luận lý hậu-Gangeśa.

Ngay trong luận lý của Gangeśa, dù đã có sự phân biệt rõ ràng nhưng trường hợp thực hữu-phổ biến có liên quan đến h và trường hợp thực hữu-phổ biến liên quan đến s cũng dã được kết hợp trong nỗ lực đạt đến một “định nghĩa cuối cùng về lan truyền” của ông, trong đó không những các trường hợp của loại thực hữu-phủ định được kể đến mà còn cả các trường hợp của thực hữu-phổ biến. Kết quả là ta phải kết luận rằng luận lý của ông trước sau đều dựa vào luật đó. Thật vậy, cái gọi là “định nghĩa cuối cùng” của ông không gì khác hơn một loạt tám định nghĩa được kết liên với nhau để bảo đảm rằng mọi trường hợp, không kể thuộc loại gì, đều được bao gồm trong đó; mặc dù lúc đầu nó nhằm vượt qua cái giới hạn mà luật đối hoán, vốn được họ sử dụng một cách vô tình, đã áp đặt lên họ; đó là “mọi trường hợp trong đó s là phổ biến hay trống rỗng phải được loại trừ bởi lẽ luật đó không thể áp dụng cho chúng.[19] Vì thế, các nhà luận lý sau này như Viśvanātha và Annambhatta bắt đầu đơn giản hóa định nghĩa này và đồng thời duy trì ý định ban đầu của nó, tức định nghĩa lan truyền như thế nào đó để có thể bao hàm tất cả các trường hợp. Khi làm thể họ đã vứt bỏ mọi cái tinh tế mà Gangeśa đã dùng để tô điểm cho định nghĩa của ông như cách dùng các đại từ liên hệ và chỉ thị thế chỗ cho các từ thông thường như h và s, một đặc điểm mà một số nhà khả cứu hiện đại xem là “thú vị” và có “một tính chất trang trọng.”

Như vậy Annambhatta định nghĩa nó là “tình trạng của h có cùng nơi với s, vốn không phải là một đối hữu của một sự vắng mặt tuyệt đối, có cùng nơi với h.”[20] Viśvanātha đề ra một định nghĩa tương tợ, nói rằng: “lan truyền được cho là tình trạng của h có cùng nơi với s, vốn không thể là một đối hữu của một sự vắng mặt ở nơi có h.”[21] “Định nghĩa cuối cùng” của Gangeśa vì thế có thể thuyết minh như sau:[22]

(18) ($x) (h(x) & s(x) & ("x) {h(x) ® ("F) [-F(x) ® -("y) (s(y) ® F(y))]})

một thuyết minh mà nó có thể không tương đương với định nghĩa có giá trị về lan truyền, như Goekoop đã khẳng định. Staal đã chỉ ra “nhiều phê phán” mà biểu thức trên chỉ ra và những phê phán này không phải hoàn toàn vô căn cứ.[23] Đào sâu thêm về vấn đề này không phải là việc của chúng ta ở đây. Chừng đó cũng đủ để nói rằng với việc đưa ý tưởng quỹ tích vào định nghĩa này để làm điều kiện chính thì “định nghĩa cuối cùng” này đã chứng kiến một sự thoái bộ đáng tiếc đối với tiến trình chính thức hóa luận lý học.

Vì vậy, khi gạt qua diễn giải về phê phán của Gangeśa đối với năm định nghĩa không-tách-ly và định nghĩa nối kết bất khả phân dựa vào luận lý chủng loại đồng thời quan sát nó từ quan điểm của một nhà bình luận truyền thống hiểu rõ từ ngữ ‘thực hữu-phổ biến’ chính xác như những gì nó được dự định, chúng ta đã đạt đến một khám phá thú vị là phần lớn phê phán của Gangeśa đã không dựa vào khái niệm chủng loại, một khái niệm mà chúng ta đoán có lẽ vẫn còn rối rắm đối với ông, mà lại dựa vào quan điểm của ông về nền tảng luận lý của ông. Nền tảng này không gì khác hơn là luật đối hoán. Và trong khi nghiên cứu các hệ luận lý khác, ông đã lập tức phóng cái nhìn đó lên chúng. Vì thế, ông nghĩ rằng các định nghĩa của Thế Thân và Trần Na về nối kết bất khả phân và sự không-tách-ly có thể được diễn dịch theo luật đó. Vì vậy, cái kết quả mà ta có thể nói trước là chúng không bao hàm các trường hợp mà luật đó áp đặt.
Tuy nhiên, ta đã chứng minh rằng luật đó không vận hành trong thuyết của Thế Thân về ba tánh, và trong đó nó cũng không hề được xem là luật. Nhiều lắm là nó được dùng như một đề dẫn mà dưới đó ông liệt kê tất cả các suy luận sai được bao gồm dưới cái tên “phản chuyển ngữ.” Cùng với Berg, ta đã chứng minh thêm rằng thuyết ba đặc tính của h do Thế Thân tìm ra và sau đó được Trần Na và Pháp Xứng khai triển không cần phải và không nên thuyết minh bằng luật đó, như Staal đòi hỏi và Gangeśa cũng như những người nối tiếp ông như Viśvanātha và Annambhatta đã hiểu. Như vậy, có thể nói rằng phê phán của Gangeśa về năm định nghĩa không-tách-ly và định nghĩa nối kết bất khả phân như đã nói đến thì không giá trị và đã phát sinh do ngộ nhận của ông về vai trò của chúng. Và mọi nhầm lẫn đã bắt nguồn từ ngộ nhận này, cuối cùng đã dẫn đến thuyết minh của Staal, khẳng định rằng luật đối hoán phải đang vận hành trong luận lý về ba đặc tính của h.

Chắc chắn ngộ nhận đó cũng có nguồn gốc của nó. Chúng ta đã chỉ ra rằng mặc dù Gangeśa phân biệt được trường hợp thực hữu-phổ biến đối với h và trường hợp thực hữu-phổ biến đối với s, cuối cùng ông đã kết thúc bằng cách hòa trộn chúng với nhau để phù hợp với quan điểm của ông trên nền tảng luận lý của ông và sự phân loại các suy luận thành ba kiểu của ông; và cả hai đều căn cứ vào luật đối hoán. Những nhầm lẫn như thế không hề gây ngạc nhiên khi được xét trong khuôn khổ thời đại của ông. Chẳng hạn, một người cùng thời với ông, có tên là Manikantha, vẫn giải thích từ “thực hữu-phổ biến” không phải liên quan đến s, như Gangeśa đã làm, mà lại liên quan đến h, làm như nó là một từ mới dành cho một trong ba đặt tính trong luận lý của Thế Thân và Trần Na. Và nếu truy tầm thêm thì ta sẽ lập tức nhận ra rằng ngộ nhận và những nhầm lẫn nói trên không hề khởi đầu với Gangeśa và những người khác, mà ít nhất là với Pháp Thượng.

Trong luận thư Nyāyabindutīkā của mình, Pháp Thượng đã hiểu các đặc tính (16) và (17) qua luật đối hoán, như Stcherbatsky đã đề cập và sau đó Staal đã thuyết minh về nó.[24] Sau khi giải thích ba đặc tính của h qua các thuật ngữ của Pháp Xứng, Pháp Thượng đặt ra vấn đề sau đây cùng với giải đáp của ông:

Nay, khi nói rằng sự xảy ra chỉ có trong các trường hợp tương tợ, thì có phải là không nhất thiết kết luận rằng sự không xảy ra chỉ có trong các trường hợp không tương tợ? Vậy tại sao hai mệnh đề được đề cập? Câu trả lời như sau. Hoặc xác định hoặc phủ định nên được sử dụng, mỗi cái đều cần thiết, và không cách nào khác. Vì thế, để nhấn mạnh nó, cả hai mệnh đề được đề cập. Tuy nhiên, nếu cả hai mệnh đề được dùng không với sự cần thiết, thì kết quả tiếp theo sẽ xảy ra là bất kỳ cái gì xảy ra trong trường hợp tương tợ và không xảy ra trong trường hợp không tương tợ đều là h. Và rồi sẽ có [những suy luận không giá trị như] ‘Nó thì đen, vì nó là con của người đó, như ở những đứa trẻ chúng ta thấy’, trong đó tình trạng ‘là con của người đó’ là h. Vì thế, cả xác định và phủ định nên được sử dụng chỉ với sự cần thiết để việc nối kết h chứng thực với s của nó nhất thiết phải xảy ra. Và vì chúng cần phải được sử dụng mà không có ngoại lệ, cho nên chỉ một trong hai được dùng đến chứ không phải hai, tức là, hoặc xác định hoặc phủ định cần phải được sử dụng. Như vậy, vì tính chất sư phạm, cả hai mệnh đề được đề cập.[25]

Rõ ràng, việc hỏi câu hỏi và trả lời nó theo cách đó “chỉ có thể được giải thích bằng giả thiết rằng tác giả đã biết luật đối hoán và sự cần thiết của nó trong nội dung này”, như Staal đã phát biểu. Chắc chắn, trong đoạn văn trên rõ ràng Pháp Thượng, dù cố ý hay vô tình, đã xem xét thuyết ba đặc tính của h qua luật đó. Vì vậy, hiển nhiên ông phải là người tạo ra mọi thứ nhầm lẫn và ngộ nhận mà những nhà luận lý nối tiếp ông phải hứng chịu, kể cả Gangeśa và Staal, ở các thời đại sau cho đến ngày nay. Thật vậy chính Staal đã nhận ra nguồn gốc của những suy luận ưa chuộng nhất như ‘Nó có sự tiếp xúc với một con khỉ vì nó là cây này’, một suy luận mà, như đã thấy, Raghunātha và Mathurātha thường xuyên nhắc lại trong các tác phẩm của họ khi bình giải các bài viết của Gangeśa, trong thí dụ mà Pháp Thượng đã cho ở trên, tức, ‘Nó thì đen vì nó là con của người đó.’

Như vậy, nhờ thuyết minh của Staal, mặc dù “tính chất không thích nghi về cả luận lý lẫn sư phạm” của nó, nay ta không chỉ có thể thấy được tại sao Gangeśa phê phán năm định nghĩa không-tách-ly—những định nghĩa phải thừa nhận là chính xác “từ một quan điểm thuần luận lý”—, mà còn biết được ông đã rút ra phê phán này từ đâu. Vì thế, không phải bàn thêm gì nữa, ngoại trừ sự gợi ý về vấn đề luận lý chủng loại trong các tác phẩm luận lý của Thế Thân, ta có thể gạt bỏ những nhận xét phê phán của Gangeśa giống như chỉ là một ngộ nhận, và trở lại các định nghĩa-không-tách ly và nối kết bất khả phân đã được thuyết minh trước đây.

Về căn bản, thuyết minh của chúng ta về năm định nghĩa không-tách-ly chính là thuyết minh của Berg, như được chứng minh rõ ràng qua sự so sánh các công thức (7) – (11) với các công thức (i) – (v), chỉ trừ một điều là ta thay ký hiệu chủng loại Î của ông bằng ký hiệu đồng nhất = của chúng ta vì những lý do đã nói trước đây. Chúng ta cũng chỉ ra rằng định nghĩa nói kết bất khả phân của Thế Thân là một dạng khác của định nghĩa thứ nhất và vì thế có thể biểu thị bằng cùng công thức (7), nếu không phải là (11). Tuy nhiên, chúng ta đã không nói đến việc xác minh cách dùng ký hiệu của chúng ta, và người ta có thể thắc mắc không biết rốt cùng nó có được xác minh hay không, nhất là khi hầu hết mọi người đều tin rằng Thế Thân có chủ trương thuyết gọi là “sự biến thiên phổ quát.”[26]

Vả lại, chúng ta đã không nói gì về định nghĩa có thể có về ký hiệu trong luận lý của Thế Thân. Bây giờ là cơ hội để tiếp cận các vấn đề này và để xem chúng ta sẽ có nhữg giải pháp gì đối với chúng. Trước hết, trong tình trạng manh mún hiện nay của các tác phẩm luận lý của Thế Thân, không có phát biểu nào được giữ lại có liên quan đến vấn đề đồng nhất, hoặc bất kỳ loại quan hệ luận lý nào khác về vấn đề đó. Thứ hai, ta còn không thể biết ông có từng bàn về các vấn đề thuộc loại đó hay không trong các tác phẩm của ông khi chúng vẫn còn giữ được nguyên vẹn. Tuy nhiên, dựa vào thuyết mô tả của ông, ta phải cần thiết giả định rằng có lẽ ông đã biết đến các quan hệ luận lý này, kể cả quan hệ đồng nhất, bởi lẽ nếu không có giả định như thế thì không thể nào quan niệm được lý thuyết đó.

Thay thế một từ n bằng một thuộc từ N để có một mô tả (ix)N(x) mà không biết đến sự tồn tại của một loại quan hệ nào đó giữa chúng là điều khó có thể tưởng tượng được. Thật vậy, trong những vận hành như thế thì quan hệ đồng nhất đã được giả định; nếu không, điều trước tiên là chúng không thể nào tự khởi động. Hơn nữa, một loại quan hệ nào đó phải có sẵn trong định nghĩa nối kết bất khả phân của Thế Thân. Vì vậy, mặc dù chúng ta không có phát biểu minh nhiên nào từ các tác phẩm của ông về vấn đề các quan hệ luận lý, nhưng chắc chắn là ông đã dùng đến chúng. Vào các thế kỷ tiếp đó, khi khám phá của ông được khai triển thêm trong tay của Trần Na và Pháp Xứng, ta biết rằng ba loại quan hệ đã được bàn đến, những quan hệ mà họ cho là cơ bản và chúng có thể dùng làm tiêu chuẩn để phân biệt ba loại luận lý. Quan hệ thứ nhất trong số này là quan hệ phủ định mà ta có thể tìm thấy trong các suy luận như ‘Không có cái bình ở đây vì không có sự tri nhận về nó.’ Quan hệ thứ hai gọi là quan hệ đồng nhất thuộc loại ‘Đây là một cái cây vì nó là sisampa.’ Loại thứ ba gọi là quan hệ “nhân quả” như được tìm thấy trong suy luận ưa ý nhất ‘Nó có lửa vì nó có khói.’[27]

Tạm gác qua một bên quan hệ phủ định thì hai quan hệ còn lại được nhận ra rất rõ trong các tác phẩm của Thế Thân. Quan hệ đống nhất đã được nhắc đến trong sự nối kết với thuyết mô tả. Tuy nhiên, thí dụ Pháp Xứng đã cho thì thú vị ở điểm nó không chỉ diễn đạt quan hệ đó trong một trường hợp đặc trưng, mà điều đáng nói là nó đặt lại vấn đề chủng loại. Bởi vì nói rằng sisampa có một quan hệ đồng nhất với cái cây cũng là nói rằng cây là một tổ hợp A mà sisampa là một thành viên của nó trong số các thành viên khác. Như vậy, quan hệ này không hoàn toàn là đồng nhất mà đúng hơn nó là quan hệ thành phần. Vì lẽ đó, quan hệ đồng nhất được biểu hiện trong thuyết mô tả của Thế Thân không hoàn toàn là một với thuyết mà Pháp Xứng có ý ám chỉ. Tuy nhiên, điều này không dẫn đến kết luận rằng cái gọi là quan hệ đồng nhất thuộc loại sau không được Thế Thân biết tới. Chúng ta sẽ chỉ ra rằng chính sự tìm ra quan hệ đó đã thúc đẩy ông đi đến một thuyết minh mới về lý luận luận lý và một định nghĩa mới về lan truyền mà những nhà luận lý tiếp đó muốn gọi là “lan truyền nội tại.”

Loại quan hệ thứ ba đều có trong hầu hết các mảng còn lại của các tác phẩm luận lý của Thế Thân. Điểm đặc trưng của quan hệ này nằm ở sự kiện nó có tên là “quan hệ nhân quả” (causal relation), hay chính xác hơn, là “quan hệ hệ quả” (consequential relation). Thí dụ về nó như sau: ‘Nó có lửa vì nó có khói.’ Để có giá trị, kể từ thời của Thế Thân suy luận đó phải có phát biểu chứng tỏ sự “nối kết bất khả phân” giữa khói và lửa, và thường có dạng “bất cứ cái gì có khói thì có lửa.” Vì thế, ở đây chúng ta có một quan hệ ngoại động hơn là một quan hệ nhân quả, bởi vì qua quan hệ này, thí dụ sẽ có dạng:

(19) A = B

 B = C

 A = C

 (Hiển nhiên, nó cũng thuộc dạng: {[(p ® q) & p] ® q}, nhưng chúng ta không cần bàn đến ở đây). Vì vậy, cái gọi là quan hệ nhân quả thực sự là một quan hệ ngoại động. Và vì lẽ đó, xét về thể cách suy luận thì nó là một phương pháp khẳng định (modus ponens). Trong Vādavidhi, Thế Thân chủ yếu vẫn nói về quan hệ này và các modus ponens của nó. Và chúng ta không nên ngạc nhiên về điều này, bởi vì với quan hệ ngoại động ta luôn có thể loại suy phần còn lại. Chẳng hạn, cho R(A,B) và R(B,C), ta không chỉ có R(A,C) mà còn R(A,A), là biểu thức của một quan hệ tự phản trong trường hợp B=A, và R(A,B) và R(B,A) là biểu thức của một quan hệ đối xứng khi A=C.

Điều thú vị là một khi quan hệ như thế được thiết lập, tức một quan hệ mang tính chất tự phản, đối xứng và ngoại động, thì ta có thể dễ dàng định nghĩa khái niệm đồng nhất như sau:[28]
(20) x = y « ("w) {[r(x,w) « r(y,w)] & [r(w,x) « r(w,y)]}

và có thể giản lược thành

(21) x = y « ("w) [w(x) « w(y)]

Công thức này có thể được viết lại theo công thức (12)

 x = y « ("w) (x Î w « y Î w)

để diễn đạt định lý khoáng trương. Và đây là điểm thú vị, bởi vì hiển nhiên là khái niệm đồng nhất có thể được định nghĩa bằng khái niệm chủng loại, và khái niệm đồng đẳng (pure equality) bằng khái niệm quan hệ tương đương. Cần chú ý là quan hệ tương đương là quan hệ tự phản, đối xứng và ngoại động. Như vậy, trong văn mạch phạm vi này, người ta có thể xem quan hệ đồng nhất có nghĩa chính xác như những gì Pháp Xứng muốn nói, đó là quan hệ chủng loại. Và vì thế, ngay trong phạm vi của Vādavidhi, quan hệ đồng nhất cũng có thể định nghĩa bằng quan hệ chủng loại. Như vậy, nếu không quá nới rộng luật thay thế trong thuyết mô tả của Thế Thân, ta có thể nói rằng trong tác phẩm đó quan hệ đồng nhất có thể được diễn giải như là quan hệ chủng loại. Lúc đó điều tất yếu là các công thức (7) – (11) có thể viết lại thành các công thức (i) – (v) của Berg mà không có bất kỳ nhầm lẫn nào đối với vấn đề chủng loại trong luận lý của Thế Thân.

Sau khi định nghĩa khái niệm lan truyền trong các công thức (5) – (11), thật dễ dàng thấy rằng Thế Thân đã thiết lập các biểu đồ luận lý của ông như thế nào. Ngày xưa, mặc dù chúng ta có các biểu đồ rõ ràng về suy luận, nhưng chưa có cái nào trong số chúng được bàn đến một cách đặc trưng, ngoại trừ dạng mười chi mà Kỳ Na Giáo đã đề ra cho chính họ.[29] Vào thời của Caraka, ông đã nhận ra nhu cầu lý luận đúng luận lý trong y học cho mục đích chẩn bệnh; vì vậy, cuốn y thư nổi tiếng của ông, Samhita, đã dành một trong những phần của nó để bàn đến nhiều khía cạnh khác nhau của lý luận luận lý trong y học.[30] Tiếp nối Caraka, Gautama Aksapāda, lần đầu tiên trong lịch sử Ấn đã bắt đầu hệ thống hóa phần lớn các kiến thức về nhận thức luận và luận lý của thời đại ông thành một hệ thống các cách ngôn, mà ông gọi là Nyāyasūtra hay Luận lý Thư, mặc dù giống như bất cứ cuốn sách nào cùng tên thuộc thời đó, nó không chỉ bàn đến luận lý như thế, mà còn cả một số các vấn đề khác ngoài chủ đề chính. Trong Nyāyasūtra, ông công nhiên qui định rằng bất kỳ dạng lý luận nào cũng phải có năm chi sau đây:[31]

1. Luận đề (tôn): Núi này đang có lửa

2. Lý do (nhân): Vì nó đang có khói

3. Thí dụ (dụ): Như trong nhà bếp

4. Áp dụng (dụng): Và cái này như thế

5. Kết luận (kết): Vì vậy cái kia cũng thế.

Các dạng lý luận này đã tồn tại đến thời Thế Thân mà không có bất cứ khảo cứu và cải tiến nào. Rõ ràng, khi nhìn nó, người ta có thể dễ dàng nhận ra đó là một loại lý luận loại suy nào đó, mặc dù đã không đạt được mức độ chính thức đáng mong muốn. Và do khuyết điểm hiển nhiên này, người ta có thể tự hỏi rốt cùng đó có phải là một biểu đồ suy luận hay không. Trong bất cứ trường hợp nào thì khi Thế Thân bắt đầu viết về luận lý, ông vẫn chấp nhận biểu đồ năm chi đó. Tuy nhiên, một cải tiến chưa từng có trước đó cuối cùng đã tách rời luận lý Ấn độ ra khỏi di sản thực tiễn của các chẩn đoán y học của Caraka và lý luận của Gautama, và đưa nó vào lộ trình dẫn đến một khoa học chân chính về luận lý. Và cải tiến này không gì khác hơn sự tìm hiểu những điều kiện cho phép ta suy luận A(s,x) đối với mỗi một x nếu có A(h,x), điều đã dẫn đến sự ra đời của thuyết ba đặc tính của h.

Trong Như Thực Luận cũng như trong một trần thuật của Huệ Chiểu, Thế Thân vẫn nói về đồ biểu năm chi.[32] Nhưng trong cùng tác phẩm này ông đã tìm thấy rằng nếu cho một suy luận có dạng

("x) [A(h,x) « A(s,x)]

để suy ra A(s,x), ta phải có A(h,x), và trong đó h phải đáp ứng ba điều kiện sau:[33]
(i) h xảy ra trong s.

(ii) h (chỉ) xảy ra trong các trường hợp tương tợ.

(iii) h không xảy ra trong các trường hợp không tương tợ.

Chúng ta đã chính thức hóa ba điều kiện này, những điều kiện đã từng được gọi là “ba tánh”, trong các công thức (15) – (17) ở trên. Một khi đã có ba điều kiện này, ta có thể thấy ngay rằng chúng được áp đặt lên Thế Thân để loại bỏ biểu đồ năm chi và thay nó bằng một cái mới, bởi vì bây giờ suy luận không còn dựa vào tỷ giảo nữa mà là một cơ sở mạnh mẽ hơn nhiều, đó là tính khả loại suy của nhiều thành phần khác nhau có liên quan trong đó. Như vậy, trong Vādavidhi, tác phẩm luận lý kế tiếp của ông, Thế Thân đã thực sự bác bỏ biểu đồ năm chi, một hành động có thể tạo ra một phê phán đáng kể từ những người chống đối ông suốt trong lịch sử, và đã thay nó bằng một biểu đồ ba chi, có dạng tổng quát như sau:

1. Luận đề: Núi có lửa

2. Lý do: Vì nó có khói

3. Tiền đề: Bất kỳ nơi nào có khói, nơi đó có lửa, như trong nhà bếp.[34]

Chi thứ ba được Thế Thân định nghĩa là một phát biểu của sự lan truyền, xác định “nối kết bất khả phân” giữa luận đề và lý do. Nói cách khác, nó thuộc dạng:

("x) [A(h,x) ® A(s,x)]

vì vậy, khi có lý do h như

("x) A(h,x)

ta luôn luôn có thể loại suy tiền đề s

($x) A(s,x)

Ngày nay, điều hoàn toàn mới lạ trong biểu đồ ba chi này và giúp phân biệt với biểu đồ năm chi của Gautama như một khám phá mới không phải là nó giản lược năm chi nặng nề thành biểu đồ khả dụng ba chi, mặc dù đó đúng là cái nó mang lại, mà là nó đã đưa vào tiền đề phát biểu chính xác quan hệ lan truyền giữa chi thứ nhất và thứ hai và lập thành chi thứ ba. Tại sao việc đưa vào này lại là một khám phá mới? Bởi vì nó được rút ra từ thuyết ba tánh của Thế Thân. Ta đã biết rằng với các điều kiện (i) – (iii) như được biểu thị bởi các công thức (15) – (17), ta luôn có thể loại suy (2) và công thức này, như đã thấy, cũng là một biểu thức của chi thứ ba. Vì vậy, không phải vô cớ hay chỉ vì tính chất rườm rà của biểu đồ năm chi mà Thế Thân loại bỏ nó và thay bằng biểu đồ ba chi. Và kết luận này còn được củng cố thêm bởi phương pháp chứng cứ ngày nay là, nếu cho các công thức (15) – (17), ta luôn có thể loại suy (2), như đã được chứng minh trước đây. Như vậy, lần đầu tiên trong lịch sử luận lý Ấn độ, người ta được chỉ cho thấy tại sao một dạng suy luận nào đó thì thuộc loại như nó là mà không phải cách nào khác.[35] Đây quả thật là đỉnh cao những thành tựu và thiên tài của Thế Thân.

Hơn nữa, dù chi thứ ba của biểu đồ mới được viết dưới dạng:

("x) A(h,x) ® A(s,x)

nhưng thật ra nó phải thuộc dạng

(22) ("x) {(A,x) & ($x) [A(h,x) ® A(s,x)]} ® A(s,x)

bởi vì nó không những phát biểu rằng ‘bất kỳ nơi nào có khói thì nơi đó có lửa’, mà còn ‘như ở trong nhà bếp’, một điều minh định rõ ràng phạm vi được mô tả bởi phát biểu trước không phải là một phạm vi trống rỗng. Tuy nhiên, nếu đúng thật như thế, như một số tác giả đã chủ trương, thì ta có thể dễ dàng thấy rằng ba điều kiện được diễn đạt bởi các công thức (15) – (17) không cần thiết gì cả. Thật vậy, điều này sẽ đưa biểu đồ ba chi trở lại lối suy luận cũ, tức lý luận bằng tỷ giảo, của Nyāyasūtra. Vì lẽ đó biện pháp luận lý sẽ là loại hẳn công thức được đưa vào:

(23) ("x) (A(h,x) ® A(s,x))

và chỉ giữ lại thành phần lan truyền cần thiết được biểu thị bởi công thức (2). Mong rằng đây là những gì Thế Thân đã làm trong Như Thực Luận II, có lẽ là tác phẩm luận lý sau cùng của ông. Trong Pramāṇasamuccaya, Trần Na thuật rằng có một luận thư tên là Như Thực Luận, chủ trương thí dụ được cho trong chi thứ ba của biểu đồ mới thì không cần thiết và vì thế có thể bỏ đi.[36] Mặc dù chỉ trích mạnh mẽ thuyết này nhưng ông đã không cho chúng ta biết tác giả là ai. Điều kỳ lạ hơn là ông cũng đã trích dẫn cuốn đó trong một vài trường hợp khác, trong đó ông tỏ ra tán thành các quan niệm của nó.[37] Tình huống này càng phức tạp hơn khi một số nhà bình giải về ông đã nhầm lẫn ghi lại tên tác phẩm này ở dạng số nhiều và như thế đã khiến cho những người khác tin rằng có lẽ có trên một luận thư mang tên Như Thực Luận.[38]
Thật vậy, một tin tưởng như thế đã được Tucci nghĩ đến. Cùng với sự kiện Như Thực Luận mà Trần Na dẫn có chủ trương một biểu đồ hai chi trong khi dịch bản Hán văn của tác phẩm cùng tên chỉ có biểu đồ cũ năm chi, ông có ý kiến rằng cuốn sau, từ đây trở đi sẽ được gọi là Như Thực Luận I, thì khác với cuốn trước, cuốn mà chúng ta đã gọi tên Như Thực Luận II. Giờ đây, sự kiện Như Thực Luận I là một trong các tác phẩm của Thế Thân, nếu không muốn nói là tác phẩm đầu tiên của ông về luận lý, là điều chắc chắn không nghi ngờ gì nữa, và vì thế chúng ta không cần bàn thêm gì nữa.[39] Về Như Thực Luận II, Frauwallner đã chỉ ra tính chất không đáng tin cậy của hình thức số nhiều và vì thế đã loại bỏ quan niệm cho rằng tên Như Thực Luận không phải là một danh từ riêng mà là từ chỉ chung cho một loạt các bài viết bàn về cái như thực (tarka).[40]

Nay chúng ta thêm chứng cứ sau để chứng minh rằng biểu đồ hai chi, mặc dù đã bị Trần Na và những người khác chỉ trích, thật sự đã được Thế Thân sử dụng trong các tác phẩm khác của ông. Chẳng hạn trong Câu Xá Luận, ta có suy luận thuộc dạng ‘Nếu người ta đã cần đến một nhân cho sự hủy diệt thì người ta sẽ cần đến một nhân cho mọi sự hủy diệt.’[41] Tương tợ, trong Thành Nghiệp Luận, Thế Thân đôi khi áp dụng suy luận đó cho những lập luận của ông như ‘Nếu một vật an trụ thì nó không có chuyển động’ hay ‘Nếu nó không chuyển động thì nó thường xuyên an trụ’, hay ‘Nếu nó không an trụ thì nó cũng không có chuyển động’, mà không hề đề cập đến chi thứ ba của biểu đồ ba chi.[42] Vì thế, khẳng định rằng, như Tucci đã làm, biểu đồ suy luận hai chi “chắc chắn không được Thế Thân chấp nhận” là sai hoàn toàn. Thật vậy, những suy luận thuộc dạng ‘Nếu nó không có chuyển động, nó thường xuyên đình trụ’ có thể được biểu thị chính xác qua công thức

(2) ("x) [A(h,x) ® A(s,x)]

mà không cần thêm vào công thức (23) một khi các điều kiện trong (15) – (17) được phát biểu, vì ta có thể loại suy (2) từ (15) – (17).

Kết luận đó thú vị trong nhiều cách. Thứ nhất, nó dẫn chúng ta đến nhận thức rằng với biểu đồ suy luận mới hai chi Thế Thân có thể giải quyết toàn bộ khó khăn Gangeśa đã đặt ra về các trường hợp thực hữu-phổ biến, bởi lẽ trong thuyết minh mới này, nếu cho:

(24) ("x) (h(x) ® g(x)

ta có thể loại suy

(25) ("x) h(x) ® ("x)g(x)

Dạng loại suy mới mạnh mẽ này về sau đã được Arcata Dharmakaradatta nhận ra.[43] Ông hiểu rằng thí dụ được cho trong chi thứ ba không dùng để chứng minh một luận đề là đúng hay sai, mà chỉ là một hướng dẫn cho người không hiểu biết, mặc dù nó thường bị phê phán và bỏ qua bởi hầu hết các nhà luận lý khác, dĩ nhiên kể cả Trần Na, Gangeśa. Và nhờ nhận ra điều này mà Arcata đã có thể chứng minh rằng người ta có thể rút ra một kết luận tự nhiên thuộc loại “Tất cả đều sát na diệt’ từ tiền đề ‘Bất kỳ cái gì thực hữu đều thuộc sát na diệt’, một điểm Gangeśa đã bỏ sót trong phê phán của ông về định nghĩa nối kết bất khả phân của Thế Thân.
Tuy nhiên, để thực hiện suy luận đó, người ta cần có sẵn khái niệm chủng loại như được định nghĩa trong (20) – (21). Điều này cũng thế trong trường hợp suy luận ‘Đây là một cái cây vì nó là simsapa’ Pháp Xứng đã cho ở trên. Bởi vì trong cả hai trường hợp đều ngầm chứa các lượng từ về chủng loại mà khi được viết đầy đủ chúng sẽ trở thành “vừa phổ biến vừa thực hữu.” Như vậy, dù phát biểu ‘Đây là một cái cây vì nó là simsapa’ có thể viết dưới dạng

(26) ("x) [f(x) ® g(x)]

nhưng điều nó thật sự chuyển tải lại thuộc dạng

(27) ($w) ("z) ("x) (x Î x « x Î w)

trong đó w biểu trưng chủng loại cây nói chung, và z biểu trưng chủng loại cây simsapa nói riêng. Và cái được (27) biểu thị thì không được biểu thị thỏa đáng bởi (26) do các lượng từ hỗn hợp của công thức trước. Vì vậy, ta có thể nói rằng Thế Thân đã đưa vào một luận lý chủng loại cùng với việc giới thiệu biểu đồ suy luận hai chi của ông. Hiện nay chúng ta không biết ông đã bàn đến và đánh giá luận lý này như thế nào, bởi vì không còn mảng nào liên quan đến nó còn giữ được. Thế nhưng, điều này không có nghĩa ông không biết đến lợi ích của một luận lý như thế trong một số trường hợp. Các thí dụ đã cho ở trên minh chứng đầy đủ điều này.

Cho đến nay, chúng ta đã mô tả luận lý của Thế Thân như chúng ta hiểu từ một số lượng hạn chế của các mảng mà chúng ta biết đến và còn giữ được từ những tác phẩm luận lý của ông. Chúng ta đã không nói gì về đặc điểm của luận lý này cũng như loại ký hiệu mà chúng ta đã sử dụng. Điều này vì chúng ta tin rằng khi nghiên cứu một luận lý như của Thế Thân, ta không nên có định kiến ngay cả đối với loại công cụ mà ta sử dụng để thực hiện việc làm này, bởi vì nó có thể dẫn chúng ta đến một kết luận sai lạc.

Nay, ở chặng cuối của việc làm này, một điều trở nên quá hiển nhiên là ta có thể phân biệt ít ra ba loại luận lý chính trong tác phẩm của ông. Thứ nhất là luận lý đồng nhất; thứ hai là luận lý định lượng. Hai luận lý này được kết hợp để cho ra các diễn đạt như các công thức (7) – (11) chẳng hạn. Chúng thuộc các loại đơn giản nhất, và điều này không nên ngạc nhiên. Như Quine đã nhận xét trong lời giới thiệu của ông cho lần tái bản cuốn Incomplete Symbols: Descriptions của Whitehead và Russell rằng “Một điều quan trọng của việc sử dụng tất cả các số hạng đơn ngoài số lượng các biến số là: luận lý định lượng và đồng nhất không còn cần được quan niệm theo cách nào khác ngoài dạng đơn giản nhất của nó, bao gồm các từ thuộc về thuộc từ, các biến số, các từ định lượng, các tác dụng thuộc nguyên lý, và ‘=’”, [44] vì thế tại sao luận lý Thế Thân lại khác biệt với thuyết mô tả của ông?

Trong cùng các công thức đó, ta có thể dễ dàng nhận ra sự hiện diện của một hàm tử F. Và hàm tử này thật sự chỉ ra rằng sớm muộn gì nó cũng sẽ được tác động lên Thế Thân để ông đạt đến một luận lý chủng loại và đây là loại luận lý thứ ba chúng ta nói đến ở trên. Lý do? Bởi vì trong một số phát biểu như chúng ta đã thấy, luận lý đồng nhất và định lượng sẽ không thể chuyển tải đầy đủ ý nghĩa của chúng. Như vậy, một luận lý chủng loại phải được quan niệm, dù hiện nay chúng ta hoàn toàn không nắm rõ nội dung chính xác của nó do thiếu tư liệu trong các mảng luận lý của Thế Thân. Một khi, ba loại luận lý này được thiết lập, đương nhiên điều tất yếu là các ký hiệu chúng ta sử dụng nhìn chung đều thuộc về chúng mà không có bất kỳ phân biệt nào. Vì thế ta không cần phải minh định hệ thống ký hiệu gì ta đã dùng đến. Chúng được dùng, và nếu chúng phù hợp, cho việc khám phá luận lý học của Thế Thân và không cho mục đích nào khác.

Sau khi đã định nghĩa luận lý của ông và nội dung của nó, vậy ta có thể rút ra kết luận gì từ nó? Ta đã thấy rằng lan truyền là khái niệm cơ bản của luận lý Thế Thân và vì thế quyết định toàn bộ phát triển kế tiếp các khám phá luận lý của ông. Có hai nguồn phát khởi khái niệm này. Thứ nhất là việc nhận ra rằng để bất kỳ suy luận thuộc bất kỳ dạng nào có thể có giá trị, cần có những điều kiện nào đó mà nó phải đáp ứng. Như vậy, nếu cho một suy luận có dạng tổng quát

("x) (A(h,x) ® A(s,x))

Thế Thân chỉ ra rằng nó phải đáp ứng ba điều kiện được diễn đạt trong các công thức (15)–(17). Sự thừa nhận ba điều kiện này dẫn đến việc thiết lập quan hệ cần thiết giữa h và s, cái mà ông gọi là “nối kết bất khả phân” hay lan truyền.

Nguồn kia xuất phát chủ yếu từ chính thuyết mô tả. Lúc đầu chúng ta đã nói rằng thuyết này không những chủ trương nếu cho một n thì luôn luôn có một N như (ix)N(x), mà còn nếu cho một n sẽ luôn luôn có một F như F(x). Và từ đó ta có thể có một biểu đồ suy luận thuộc dạng

{("x) [f(x) É g(x)] & ("x) f(x)} É ("x)g(x)

như được biểu thị trong công thức (1). Vì thế, về phương diện này không được quá nhấn mạnh rằng chính thuyết mô tả đã thúc đẩy Thế Thân tìm hiểu các điều kiện của một suy luận mà không phải là cái gì khác. Vì thế, thuyết này đóng vai trò quyết định trong lãnh vực luận lý.

Một khi khái niệm lan truyền được định nghĩa, nhiều thuyết minh luận lý khác nhau thuộc loại mới này phải được cần đến, và nổi bật nhất trong số đó hẳn là sự giản lược biểu đồ lý luận tỷ giảo năm chi thành loại chính thức hoàn chỉnh ba chi, và rồi là loại hai chi. Chúng ta đã chỉ ra rằng việc giản lược biểu đồ cũ năm chi thành biểu đồ mới ba chi không phải tình cờ, mà do những nỗ lực và lý do tinh tế. Không cần phải nói, nó không phải là đóng góp của Trần Na như được khẳng định từ trước đến nay. Thế nhưng, điểm thú vị lại nằm ở lần giản lược thứ hai của biểu đồ mới ba chi này thành một biểu đồ còn mới hơn, đó là hai chi.

Sự giản lược này thật hứng thú, bởi vì lần đầu tiên giá trị của một suy luận được thiết lập không phải dựa vào quan hệ về một thực thể ngoài luận lý mà dựa vào sức mạnh của chính nó. Và như thế, khái niệm giản lược chính thức đã đạt đến đỉnh cao của nó. Thật không may là hướng tư tưởng này đã không được những người kế thừa Thế Thân nắm bắt. Họ thường xuyên xem nó như đối tượng của sự phê phán và vì thế đã chối bỏ nó. Thất bại của họ trong việc đánh giá tầm quan trọng của nó có lẽ là yếu tố quan trọng nhất góp phần vào tình trạng chết cứng của tư tưởng và khoa học truyền thống Ấn độ sau thời ông. Tuy nhiên, nếu giá trị của một suy luận được quyết định ở chính nó, thì các phát biểu thuộc dạng “sự thật của một phát biểu tùy thuộc vào sự tồn tại của chúng như là cái gì đó trong vũ trụ” sẽ là gì? Câu hỏi này, chúng ta sẽ xét đến ở chương sau.¤

dịch Việt: Đạo Sinh

[1] Annambhatta, Tarkasaṃgraha, ed. Foucher, p. 134.

[2] Staal, “Contraposition in Indian Logic, Logic, Methodology and Philosophy of Science”, Proceedings of the 1960 International Congress, Stanford: Stanford University Press, 1962: 638-639.
[3] Kumārila, The Mīmāṃsāślokavārtika of Kumārila Bhatta, ed. Rāma Sāstrī Tailanga, Benares: Chowkhambā Sanskrit Series, 1898: 384-385: Section Anumānaparicchedaḥ, verses 121-122.
[4] Dharmakīrti, Nyāyabindu, ed. Serbatskoi, Petrograd, 1918: 18-19.

[5] Như Thực Luận, Taisho 1633, p 30c20-21: 我 立 因。 種 相 是 根 本 法。同 類 所 攝 異 類 相 離。
[6] Staal, “Contraposition in Indian Logic: 634; Kajiyama, Bukkyo tetsugaku ni okeru meidai kaishaku”, in Kanakura hakushi koki kinen Indogaku Bukkyogaku ronshu, ed. Tsukamoto Mekio Kyoto: Heirakuji shoden, 1966: 423-438.

[7] Vādavidhi, Fragment 1.

[8] Một lần nữa, cần lưu ý rằng khi nói như vậy chúng tôi cho rằng Pháp Xứng hoàn toàn nương theo các thuật ngữ và quan điểm của Trần Na. Như vậy, dù đã lập lại từ avyabhicāra trong Nyāyabindu và Pramāṇavārttika, nhưng Hetubindu vẫn bàn đến bài tụng lấy từ Pramāṇavārttika:
pakṣadharmas tadamsena vyāpto hetus tridhaiva saḥ/

avinābhāvaniyamād dhetvābhāsās tato’pare//

trong đó từ avinābhāva tự chứng thực một cách hiển nhiên và được sử dụng trong toàn bản luận này. Xem Steinkellner, Dharmakīrti’s Hetubinduḥ, Teil I, Sitzungsberichte der Osterreichischen Akademie der Wissenschaften, Philosophisch-Historische Klasse, 252. Band, 1. Abhandlung, pp.30-39. Như vậy, ở p.39, chúng tôi đọc: “etallakṣaṇas tridhaiva so hetus triprakāra eva, svabhāvaḥ kāryam anupalabdhiś ceti yathānitye kasmiṃścit sādhye sattvam agnimati pradeśe dhūmo’bhāve copalabdhilakṣaṇaprāptasyānupalabdhir ity atraiva trividhe ’vinābhāvaniyamāt, pakṣadharmasya yathoktā vyāptir avinābhāvaḥ sa trividhād dhetor anyatra nāstīty atraiva niyata ucyate…”

[9] Berg, Review of Staal’s “Contraposition in Indian Logic”, in Journal of Symbolic Logic, XXXV (1970: 570ff.

[10] Berg, op. cit.: 575.

[11] Goekoop, op. cit.: 63-64.

[12] Gangeśa, Tattvacintāmani (Anumāna-khanda), ed. with the Dīdhiti commentary of Raghunātha and the sub-commentary of Gadādhara, Benares: Chowkhambā Sanskrit Series, 1926: 1326; Uddyotakara, Nyāyavārttika: 46.

[13] Viśvanātha, Nyāyasiddhāntamuktāvalī, ed. Narayancharan Shastri et. al., Varanasi, 1972: 464-466: anvayavyāptir uktaiva vyatirekād ihocyate/ traividhyam iti/ anumānm hi trividham kevalānvayikevala-vyatirekyanvayavyatirekibhedāt/ tatrāsadvipakṣaḥ kevalānvayī yathā ghaṭo ’bhidheyaḥ prameyatvād ity ādau, tatra hi sarvasyaivābhidheyatvād vipakṣāsattvam/ asatsapakṣaḥ kevalavyatirekī yathā pṛthivī itarebhyo bhidyate gandhavattvād ity ādau tatra hi jalāditrayodasabhedasya pūrvam aniscitatayā niścitasādhyavataḥ sapakṣasyābhāva iti/ satsapakṣavipakṣo ’nvayavyatirekī yathā vahnimān dhūmād ity ādau tatra sapakṣasya mahānasāder vipakṣasya jalahradādeś ca sattvam iti// 

[14] Annambhatta, Tarkasaṃgraha: 132-134: “liṅgam trividham anvayavyatireki kevalānvayi kevalavyatireki ca/ anvayena vyatirekena ca vyātimad anvayavyatireki yathā vahnau sādhye dhūmavattvam yatra dhūmas tatrāgniḥ yathā mahānasaity anvayavyāptiḥ/ yatra vahnir nāsti tatra dhūmo ’pi nāsti yathā mahāhradaiti vyatirekavyāptiḥ/ anvayamātravyāptikam kevalānvayi yathā ghaṭo ’bhidheyaḥ prameyatvāt patavat atra prameyatvābhidheyatvayor vyatirekamātravyāptikam kevalavyatireki yathā pṛthivī itarebhyo bhidyate gandhavattvāt yad itarebhyo na bhidyate na tad gandhavat yathā jalam na ceyam tathā pṛthivīmātrasya pakṣatvāt//.” Về từ pakṣatva, xem Manikantha, Nyāyaratna, ed. Subrahmanya Sastri and V. Krishnamacharya, Madras: Madras Government Oriental Series, 1953: 109-115.

[15] Matilal, “Gangeśa on the Concept of Universal Property (kevalānvayin)”, Logic Methodology and Philosophy of Science III, Proceedings of the Third International Congress for Logic, Methodology and Philosophy of Science, Amsterdam 1967, Amsterdam: North-Holland Pub. Co., 1968: 531-542.

[16] Staal, Contraposition in Indian Logic: 636.

[17] Berg, op. cit. 574-575.

[18] Keśavamiśra, Tarkabhāsā, ed. Srī Shobhita Miśra, Banaras: The Chowkhambā Sanskrit Series Office, 1953: 66-68.

[19] Gangeśa, Tattvacintāmani: 100-160.

[20] Annambhatta, Tarkasaṃgraha: 124.

[21] Viśvanātha, Nyāyāsiddhāntamuktāvalī, ed. Narayancharan Shastri & Swetvaikuntha Shastri, Varaṇasi: The Chowkhambā Sanskrit Series Office, 1972: 232-246.

[22] Berg, Journal of Symbolic Logic XXXV (1970): 573;

[23] Calari Sesācārya, Pramāṇacandrikā, ed. & transl. Susil Kumar Maitra, Calcutta: Calcutta University, 1936: 143-144.

[24] Stcherbatsky, Buddhist Logic II: 53.

[25] Dharmottara, Nyāyabinduṭikā, ed. Serbatskoi, Petrograd, 1918: 20: nanu ca sapakṣa eva sattvan ity ukte vipakṣae ’sattvam eveti gamyate eva/ tat kim artham punar ubhayor upādānam kṛtam/ tad ucyate/ anvayo vyatireko vā niyamavān eva prayoktavyo nānyatheti darayitum dvayor apy upādānam kṛtam/ aniyame hi dvayor api prayoge ’yam arthaḥ syāt/ sapakṣe yo ’sti vipakṣe ca nāsti sa hetur iti/ tathā ca sati sa syāmas tatputratvād dṛśyamānaputravad iti tatputratvam hetuḥ syāt/ tasmān niyamavator evānvayavyatirekayoḥ prayogaḥ kartavyo/ yena pratibandho gamyeta sādhanasya sādhyena/ niyamavatoś ca prayoge ’vasyakartavye dvayor eka eva prayoktavyo na dvāv iti niyamavān evānvayo vyatireko vā prayoktavya iti sikṣaṇārtham dvayor upādānam iti//.

[26] Mookerjee, Buddhist Philosophy of Universal Flux, Calcutta: Calcutta University, 1935; cf. Murti, Central Philosophy of Buddhism, London: Allen & Unwin, 1953; also Staal, Negation and the Law of Contradiction in Indian Thought: a Comparative Study, BSOAS XXV (1962): 52-71.
[27] Dharmakīti, The Pramāṇavārttikam of Dharmakīrti: 2.

[28] Hailperin, “Remarks on Identity and Description in First-Order Axiom Systems”, Journal of Symbolic Logic XIX (1954): 14-20. Xem theem Beth, The Foundations of Mathematics: 224-231.
[29] Vādidevaśri, Syāvādaratnākāra, Poona: Arhat Mata Prabhakara: 556; Bhadrabāhu, Daśavaikālikaniryukti, Agamodaya, gāthā 49-50.

[30] Caraka, Carakasaṃhitā I, ed. Vinayacandra Vāsiṣṭha & Jayadeva Sarmā, Ajamer: Ārya sāhitya mandala, 1954: 740 & 814.

[31] Nyāyasūtra 1.1.32-39.

[32] Như Thực Luận, Taisho 1633: 30c2-4: 論曰。 聲無 常因功力生。 無 中 間 生 故。譬 如 瓦 器 因 功 力 生。 生 已 破 滅。聲 亦 如 是。故 聲 無 常。

Huệ Chiểu, Nhân Minh Nghĩa Đoán, Taisho 1841: 144b29-c1: 如世親説五能立。亦不非於舊陳。

Huệ Chiểu, ibid.: 155b13-24: 解小乘外道。立有五分。慈尊無箸陳那等。

但立。分。合結為成於喻。是喻。之差别。善立於喻。足顯合結。無繁喻外。别立二支。又云。瑜伽同類即當對法合支。對法既立喻訖。何故復説合支。結既許同世 親合支。如何即别。又瑜伽引喻之言。為同為異。若其是總同類即是喻。何關對法合支。若引喻即説為同類。與世親合支何别。作斯會教全不相當。應知。對法合 結。與世親不殊。

p157c11-14: 又據世親五支之中。明缺減過者。有二十五或二十一。謂闕一有五。闕二有。。闕。有十。全闕有一。取捨如前。准此。只有二十。句。二十五句一總不相當。或是 寫錯。更勘餘本。

[33] Như Thực Luận, Taisho 1633, p 30c20-21: 我 立 因。 種 相 是 根 本 法。同 類 所 攝 異 類 相 離。 
[34] Khuy Cơ, Nhân Minh Nhập Chánh Lý Luận Sớ, Taisho 1840: p. 94a1-2; Vacaspatimiśra, Nyāyavārttikatātparyaṭīkā 298: atra vasubandhunā pratijñādayas trayo ’vayavā durvihitā akṣapādalakṣaṇena ity uktam/.

[35] Baliṅgay, “The Significance of Drishanta in Indian Logic”, in Essays in Philosophy Presented to Dr. T. M. P. Mahadevan on His Fiftieth Birthday, ed. Chari, Madras: Ganesh & Co. 1962: 163-175.

[36] Dignāga, Pramāṇasanuccaya IV: 66b4-5; Frauwallner, Vasubandhu’s Vādavidhiḥ, WZKSOA (1957): 145-146; Tucci, Buddhist Logic before Diṅnāga, JRAS (1929): 486-487.
[37] Dignāga, Pramāṇasanuccaya III: 44a7-b1; Frauwallner, Vasubandhu’s Vādavidhiḥ: 144-145; Tucci, op. cit.: 486.

[38] Dignāga, Pramāṇasanuccaya III: 44a7-b1; IV: 66b4-5.

[39] Wen Kuei, Jen ming ju cheng li lun shu, Dainippon Zokuzokyo 86, p. 355a9-13.

[40] Frauwallner, Vasubandhu’s Vādavidhiḥ, p. 144.

[41] Abhidharmakośa IV 3a-b, LVP pp.4-9.

[42] Karmasiddhiprakaraṇa, ed. Yamagucchi, Kyoto: Hozokan, 1951: 7.

[43] Arcata, Hetubinduṭīkā: 62-63.

[44] Van Heijenoort, From Frege to Godel, Cambridge, Mass: Havard University Press, 1967: 217.